切换至 "中华医学电子期刊资源库"

中华移植杂志(电子版) ›› 2020, Vol. 14 ›› Issue (06) : 397 -400. doi: 10.3877/cma.j.issn.1674-3903.2020.06.013

所属专题: 文献

综述

间充质干细胞对胰岛移植物的保护作用机制研究进展
李峰1, 李晓航1, 张佳林1,()   
  1. 1. 110001 沈阳,中国医科大学附属第一医院肝胆外科
  • 收稿日期:2020-06-27 出版日期:2020-12-25
  • 通信作者: 张佳林
  • 基金资助:
    辽宁省重点研发计划指导项目(2017225031)

Research progress on the protective mechanism of mesenchymal stem cells on islet grafts

Feng Li1, Xiaohang Li1, Jialin Zhang1,()   

  1. 1. Hepatobiliary Surgery Department, the First Hospital of China Medical University, Shenyang 110001, China
  • Received:2020-06-27 Published:2020-12-25
  • Corresponding author: Jialin Zhang
引用本文:

李峰, 李晓航, 张佳林. 间充质干细胞对胰岛移植物的保护作用机制研究进展[J]. 中华移植杂志(电子版), 2020, 14(06): 397-400.

Feng Li, Xiaohang Li, Jialin Zhang. Research progress on the protective mechanism of mesenchymal stem cells on islet grafts[J]. Chinese Journal of Transplantation(Electronic Edition), 2020, 14(06): 397-400.

胰岛移植被认为是治疗1型糖尿病及部分2型糖尿病最为有效的方法,但目前其临床疗效有待进一步提高。已有大量文献报道间充质干细胞(MSCs)对胰岛移植物具有保护作用,但其具体机制尚不完全清楚。本文就已报道的MSCs对胰岛移植物的营养作用、促进胰岛移植物再血管化、免疫调节及调控内质网应激4个方面的研究进展做一综述。

Islet transplantation is considered to be the most effective method for the treatment of type 1 diabetes and some type 2 diabetes, but its clinical efficacy needs to be further improved. A large number of literatures have reported that mesenchymal stem cells (MSCs) have a protective effect on islet grafts, but its specific mechanism is unclear. This article summarizes the reported protective effects of MSCs on islet grafts into four aspects: nutritional effects, promotion of revascularization, immune regulation, and regulation of endoplasmic reticulum stress.

表1 间充质干细胞对胰岛移植物保护作用机制小结
1
Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition[J]. Diabetes Res Clin Pract, 2019, 157: 107843.
2
Shapiro AM, Pokrywczynska M, Ricordi C. Clinical pancreatic islet transplantation[J]. Nat Rev Endocrinol, 2017, 13(5): 268-277.
3
Shapiro AM, Lakey JR, Ryan EA, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen[J]. N Engl J Med, 2000, 343(4): 230-238.
4
Pepper AR, Bruni A, Shapiro AMJ. Clinical islet transplantation: is the future finally now?[J]. Curr Opin Organ Transplant, 2018, 23(4): 428-439.
5
Citro A, Cantarelli E, Piemonti L. Anti-inflammatory strategies to enhance islet engraftment and survival[J]. Curr Diab Rep, 2013, 13(5): 733-744.
6
Brown C, McKee C, Bakshi S, et al. Mesenchymal stem cells: Cell therapy and regeneration potential[J]. J Tissue Eng Regen Med, 2019, 13(9): 1738-1755.
7
Borg DJ, Weigelt M, Wilhelm C, et al. Mesenchymal stromal cells improve transplanted islet survival and islet function in a syngeneic mouse model[J]. Diabetologia, 2014, 57(3): 522-531.
8
Newton WC, Kim JW, Luo JZQ, et al. Stem cell-derived exosomes: a novel vector for tissue repair and diabetic therapy[J]. J Mol Endocrinol, 2017, 59(4): R155-R165.
9
Rackham CL, Dhadda PK, Chagastelles PC, et al. Pre-culturing islets with mesenchymal stromal cells using a direct contact configuration is beneficial for transplantation outcome in diabetic mice[J]. Cytotherapy, 2013, 15(4): 449-459.
10
Park KS, Kim YS, Kim JH, et al. Trophic molecules derived from human mesenchymal stem cells enhance survival, function, and angiogenesis of isolated islets after transplantation[J]. Transplantation, 2010, 89(5): 509-517.
11
Rackham CL, Hubber EL, Czajka A, et al. Optimizing beta cell function through mesenchymal stromal cell-mediated mitochondria transfer[J]. Stem cells, 2020, 38(4): 574-584.
12
de Souza BM, Bouças AP, Oliveira FD, et al. Effect of co-culture of mesenchymal stem/stromal cells with pancreatic islets on viability and function outcomes: a systematic review and meta-analysis[J]. Islets, 2017, 9(2): 30-42.
13
Arzouni AA, Vargas-Seymour A, Rackham CL, et al. Mesenchymal stromal cells improve human islet function through released products and extracellular matrix[J]. Clin Sci (Lond), 2017, 131(23): 2835-2845.
14
Olaniru OE, Pingitore A, Giera S, et al. The adhesion receptor GPR56 is activated by extracellular matrix collagen III to improve β-cell function[J]. Cell Mol Life Sci, 2018, 75(21): 4007-4019.
15
Rackham CL, Amisten S, Persaud SJ, et al. Mesenchymal stromal cell secretory factors induce sustained improvements in islet function pre- and post-transplantation[J]. Cytotherapy, 2018, 20(12): 1427-1436.
16
Xu TW, Lv ZB, Chen QH, et al. Vascular endothelial growth factor over-expressed mesenchymal stem cells-conditioned media ameliorate palmitate-induced diabetic endothelial dysfunction through PI-3K/AKT/m-TOR/eNOS and p38/MAPK signaling pathway[J]. Biomed Pharmacother, 2018, 106: 491-498.
17
Zhu GQ, Jeon SH, Lee KW, et al. Engineered stem cells improve neurogenic bladder by overexpressing SDF-1 in a pelvic nerve injury rat model[J]. Cell Transplant, 2020, 29: 963689720902466.
18
Hu C, Li L, Preconditioning influences mesenchymal stem cell properties in vitro and in vivo[J]. J Cell Mol Med, 2018, 22(3): 1428-1442.
19
Wen D, Peng Y, Liu D, et al. Mesenchymal stem cell and derived exosome as small RNA carrier and immunomodulator to improve islet transplantation[J]. J Control Release, 2016, 238: 166-175.
20
Nie W, Ma X, Yang C, et al. Human mesenchymal-stem-cells-derived exosomes are important in enhancing porcine islet resistance to hypoxia[J]. Xenotransplantation, 2018, 25(5): e12405.
21
Pepper AR, Gala-Lopez B, Ziff O, et al., Revascularization of transplanted pancreatic islets and role of the transplantation site[J]. Clin Dev Immunol, 2013: 352315.
22
Cao XK, Li R, Sun W, et al. Co-combination of islets with bone marrow mesenchymal stem cells promotes angiogenesis[J]. Biomed Pharmacother, 2016, 78: 156-164.
23
Cunha JP, Leuckx G, Sterkendries P, et al. Human multipotent adult progenitor cells enhance islet function and revascularisation when co-transplanted as a composite pellet in a mouse model of diabetes[J]. Diabetologia, 2017, 60(1): 134-142.
24
Hajizadeh-Saffar E, Tahamtani Y, Aghdami N, et al. Inducible VEGF expression by human embryonic stem cell-derived mesenchymal stromal cells reduces the minimal islet mass required to reverse diabetes[J]. Sci Rep, 2015, 5: 9322.
25
Kuljanin M, Bell GI, Sherman SE, et al. Proteomic characterisation reveals active Wnt-signalling by human multipotent stromal cells as a key regulator of beta cell survival and proliferation[J]. Diabetologia, 2017, 60(10): 1987-1998.
26
Ren G, Rezaee M, Razavi M, et al. Adipose tissue-derived mesenchymal stem cells rescue the function of islets transplanted in sub-therapeutic numbers via their angiogenic properties[J]. Cell Tissue Res, 2019, 376(3): 353-364.
27
Cavallari G, Olivi E, Bianchi F, et al. Mesenchymal stem cells and islet cotransplantation in diabetic rats: improved islet graft revascularization and function by human adipose tissue-derived stem cells preconditioned with natural molecules[J]. Cell Transplant, 2012, 21(12): 2771-2781.
28
Le Blanc K, Davies LC. Mesenchymal stromal cells and the innate immune response[J]. Immunol Lett, 2015, 168(2): 140-146.
29
Favaro E, Carpanetto A, Caorsi C, et al. Human mesenchymal stem cells and derived extracellular vesicles induce regulatory dendritic cells in type 1 diabetic patients[J]. Diabetologia, 2016, 59(2): 325-333.
30
Mohammadi Ayenehdeh J, Niknam B, Rasouli S, et al. Immunomodulatory and protective effects of adipose tissue-derived mesenchymal stem cells in an allograft islet composite transplantation for experimental autoimmune type 1 diabetes[J]. Immunol Lett, 2017, 188: 21-31.
31
Reading JL, Yang JH, Sabbah S, et al. Clinical-grade multipotent adult progenitor cells durably control pathogenic T cell responses in human models of transplantation and autoimmunity[J]. J Immunol, 2013, 190(9): 4542-4552.
32
Ezquer F, Ezquer M, Contador D, et al. The antidiabetic effect of mesenchymal stem cells is unrelated to their transdifferentiation potential but to their capability to restore Th1/Th2 balance and to modify the pancreatic microenvironment[J]. Stem Cells, 2012, 30(8): 1664-1674.
33
Chen T, Yuan J, Duncanson S, et al. Alginate encapsulant incorporating CXCL12 supports long-term allo- and xenoislet transplantation without systemic immune suppression[J]. Am J Transplant, 2015, 15(3): 618-627.
34
Kim JY, Park M, Kim YH, et al. Tonsil-derived mesenchymal stem cells (T-MSCs) prevent Th17-mediated autoimmune response via regulation of the programmed death-1/programmed death ligand-1 (PD-1/PD-L1) pathway[J]. J Tissue Eng Regen Med, 2018, 12(2): e1022-e1033.
35
Yen BL, Yen ML, Hsu PJ, et al. Multipotent human mesenchymal stromal cells mediate expansion of myeloid-derived suppressor cells via hepatocyte growth factor/c-met and STAT3[J]. Stem Cell Reports, 2013, 1(2): 139-151.
36
Ben Nasr M, Vergani A, Avruch J, et al. Co-transplantation of autologous MSCs delays islet allograft rejection and generates a local immunoprivileged site[J]. Acta Diabetol, 2015, 52(5): 917-927.
37
Ben Nasr M, Vergani A, Avruch J, et al. 4-phenylbutyric acid attenuates endoplasmic reticulum stress-mediated pancreatic β-cell apoptosis in rats with streptozotocin-induced diabetes[J]. Endocrine, 2014, 47(1): 129-137.
38
Negi S, Park Sh, Jetha A, et al. Evidence of endoplasmic reticulum stress mediating cell death in transplanted human islets[J]. Cell transplant, 2012, 21(5): 889-900.
39
He Y, Zhang D, Zeng Y, et al. Bone marrow-derived mesenchymal stem cells protect islet grafts against endoplasmic reticulum stress-induced apoptosis during the early stage after transplantation[J]. Stem Cells, 2018, 36(7): 1045-1061.
40
Chen J, Chen J, Cheng Y, et al. Mesenchymal stem cell-derived exosomes protect beta cells against hypoxia-induced apoptosis via miR-21 by alleviating ER stress and inhibiting p38 MAPK phosphorylation[J]. Stem Cell Res Ther, 2020, 11(1): 97.
41
Zhu XY, Urbieta-Caceres V, Krier JD, et al. Mesenchymal stem cells and endothelial progenitor cells decrease renal injury in experimental swine renal artery stenosis through different mechanisms[J]. Stem Cells, 2013, 31(1): 117-125.
[1] 何金梅, 尹立雪, 谭静, 张文军, 王锐, 任梅, 廖明娇. 超声心肌做功技术对2型糖尿病患者潜在左心室心肌收缩功能损伤的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1029-1035.
[2] 王珏, 陈赛君, 贲志飞, 詹锦勇, 徐开颖. 剪切波弹性成像联合极速脉搏波技术评估颈动脉弹性对糖尿病性视网膜病变的预测价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 636-641.
[3] 王洁, 丁泊文, 尹健. 糖尿病性乳腺病52例临床分析[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 285-289.
[4] 陈絮, 詹玉茹, 王纯华. 孕妇ABO血型联合甲状腺功能检测对预测妊娠期糖尿病的临床价值[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 604-610.
[5] 张健, 刘小龙, 查天建, 姚俊杰, 王傑. 富含血小板血浆联合异种脱细胞真皮基质修复糖尿病足缺血性创面的临床效果[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 503-506.
[6] 赵雅玫, 谢斌, 陈艳, 吴健. 抗生素骨水泥联合负压封闭引流对糖尿病足溃疡临床疗效的荟萃分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 427-433.
[7] 李琛, 张惟佳, 潘亚萍. 牙周炎与系统性疾病之间关系的应用思考:2022年EFP和WONCA欧洲分部联合研讨会共识报告的解读及启示[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 322-327.
[8] 叶弘, 吕婧喆, 钟良军. 白藜芦醇治疗牙周炎和糖尿病的新进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 376-380.
[9] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[10] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[11] 黄岩, 刘晓巍, 杨春玲, 兰烨. 急性胰腺炎合并糖尿病患者的临床特征及血糖代谢与病情严重度的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 439-442.
[12] 张政赢, 鞠阳, 刘晓宁. 二甲双胍对2型糖尿病患者大肠腺瘤术后复发的影响[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 485-488.
[13] 薛念余, 张盛敏, 吴凌恒, 沙蕾, 童揽月, 沈崔琴, 李朝军, 杜联芳. 研究血清胆红素对2型糖尿病患者心脏结构发生改变前心肌功能的影响[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1004-1009.
[14] 谢国晓, 赵凌霞, 薛雪花. 慢性病管理模式在糖尿病社区管理中的应用[J]. 中华临床医师杂志(电子版), 2023, 17(05): 587-590.
[15] 梁宇同, 丁旭, 马国慧, 黄艳红. 间充质干细胞在宫腔粘连治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 596-599.
阅读次数
全文


摘要