切换至 "中华医学电子期刊资源库"

中华移植杂志(电子版) ›› 2020, Vol. 14 ›› Issue (06) : 397 -400. doi: 10.3877/cma.j.issn.1674-3903.2020.06.013

所属专题: 文献

综述

间充质干细胞对胰岛移植物的保护作用机制研究进展
李峰1, 李晓航1, 张佳林1,()   
  1. 1. 110001 沈阳,中国医科大学附属第一医院肝胆外科
  • 收稿日期:2020-06-27 出版日期:2020-12-25
  • 通信作者: 张佳林
  • 基金资助:
    辽宁省重点研发计划指导项目(2017225031)

Research progress on the protective mechanism of mesenchymal stem cells on islet grafts

Feng Li1, Xiaohang Li1, Jialin Zhang1,()   

  1. 1. Hepatobiliary Surgery Department, the First Hospital of China Medical University, Shenyang 110001, China
  • Received:2020-06-27 Published:2020-12-25
  • Corresponding author: Jialin Zhang
引用本文:

李峰, 李晓航, 张佳林. 间充质干细胞对胰岛移植物的保护作用机制研究进展[J/OL]. 中华移植杂志(电子版), 2020, 14(06): 397-400.

Feng Li, Xiaohang Li, Jialin Zhang. Research progress on the protective mechanism of mesenchymal stem cells on islet grafts[J/OL]. Chinese Journal of Transplantation(Electronic Edition), 2020, 14(06): 397-400.

胰岛移植被认为是治疗1型糖尿病及部分2型糖尿病最为有效的方法,但目前其临床疗效有待进一步提高。已有大量文献报道间充质干细胞(MSCs)对胰岛移植物具有保护作用,但其具体机制尚不完全清楚。本文就已报道的MSCs对胰岛移植物的营养作用、促进胰岛移植物再血管化、免疫调节及调控内质网应激4个方面的研究进展做一综述。

Islet transplantation is considered to be the most effective method for the treatment of type 1 diabetes and some type 2 diabetes, but its clinical efficacy needs to be further improved. A large number of literatures have reported that mesenchymal stem cells (MSCs) have a protective effect on islet grafts, but its specific mechanism is unclear. This article summarizes the reported protective effects of MSCs on islet grafts into four aspects: nutritional effects, promotion of revascularization, immune regulation, and regulation of endoplasmic reticulum stress.

表1 间充质干细胞对胰岛移植物保护作用机制小结
1
Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition[J]. Diabetes Res Clin Pract, 2019, 157: 107843.
2
Shapiro AM, Pokrywczynska M, Ricordi C. Clinical pancreatic islet transplantation[J]. Nat Rev Endocrinol, 2017, 13(5): 268-277.
3
Shapiro AM, Lakey JR, Ryan EA, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen[J]. N Engl J Med, 2000, 343(4): 230-238.
4
Pepper AR, Bruni A, Shapiro AMJ. Clinical islet transplantation: is the future finally now?[J]. Curr Opin Organ Transplant, 2018, 23(4): 428-439.
5
Citro A, Cantarelli E, Piemonti L. Anti-inflammatory strategies to enhance islet engraftment and survival[J]. Curr Diab Rep, 2013, 13(5): 733-744.
6
Brown C, McKee C, Bakshi S, et al. Mesenchymal stem cells: Cell therapy and regeneration potential[J]. J Tissue Eng Regen Med, 2019, 13(9): 1738-1755.
7
Borg DJ, Weigelt M, Wilhelm C, et al. Mesenchymal stromal cells improve transplanted islet survival and islet function in a syngeneic mouse model[J]. Diabetologia, 2014, 57(3): 522-531.
8
Newton WC, Kim JW, Luo JZQ, et al. Stem cell-derived exosomes: a novel vector for tissue repair and diabetic therapy[J]. J Mol Endocrinol, 2017, 59(4): R155-R165.
9
Rackham CL, Dhadda PK, Chagastelles PC, et al. Pre-culturing islets with mesenchymal stromal cells using a direct contact configuration is beneficial for transplantation outcome in diabetic mice[J]. Cytotherapy, 2013, 15(4): 449-459.
10
Park KS, Kim YS, Kim JH, et al. Trophic molecules derived from human mesenchymal stem cells enhance survival, function, and angiogenesis of isolated islets after transplantation[J]. Transplantation, 2010, 89(5): 509-517.
11
Rackham CL, Hubber EL, Czajka A, et al. Optimizing beta cell function through mesenchymal stromal cell-mediated mitochondria transfer[J]. Stem cells, 2020, 38(4): 574-584.
12
de Souza BM, Bouças AP, Oliveira FD, et al. Effect of co-culture of mesenchymal stem/stromal cells with pancreatic islets on viability and function outcomes: a systematic review and meta-analysis[J]. Islets, 2017, 9(2): 30-42.
13
Arzouni AA, Vargas-Seymour A, Rackham CL, et al. Mesenchymal stromal cells improve human islet function through released products and extracellular matrix[J]. Clin Sci (Lond), 2017, 131(23): 2835-2845.
14
Olaniru OE, Pingitore A, Giera S, et al. The adhesion receptor GPR56 is activated by extracellular matrix collagen III to improve β-cell function[J]. Cell Mol Life Sci, 2018, 75(21): 4007-4019.
15
Rackham CL, Amisten S, Persaud SJ, et al. Mesenchymal stromal cell secretory factors induce sustained improvements in islet function pre- and post-transplantation[J]. Cytotherapy, 2018, 20(12): 1427-1436.
16
Xu TW, Lv ZB, Chen QH, et al. Vascular endothelial growth factor over-expressed mesenchymal stem cells-conditioned media ameliorate palmitate-induced diabetic endothelial dysfunction through PI-3K/AKT/m-TOR/eNOS and p38/MAPK signaling pathway[J]. Biomed Pharmacother, 2018, 106: 491-498.
17
Zhu GQ, Jeon SH, Lee KW, et al. Engineered stem cells improve neurogenic bladder by overexpressing SDF-1 in a pelvic nerve injury rat model[J]. Cell Transplant, 2020, 29: 963689720902466.
18
Hu C, Li L, Preconditioning influences mesenchymal stem cell properties in vitro and in vivo[J]. J Cell Mol Med, 2018, 22(3): 1428-1442.
19
Wen D, Peng Y, Liu D, et al. Mesenchymal stem cell and derived exosome as small RNA carrier and immunomodulator to improve islet transplantation[J]. J Control Release, 2016, 238: 166-175.
20
Nie W, Ma X, Yang C, et al. Human mesenchymal-stem-cells-derived exosomes are important in enhancing porcine islet resistance to hypoxia[J]. Xenotransplantation, 2018, 25(5): e12405.
21
Pepper AR, Gala-Lopez B, Ziff O, et al., Revascularization of transplanted pancreatic islets and role of the transplantation site[J]. Clin Dev Immunol, 2013: 352315.
22
Cao XK, Li R, Sun W, et al. Co-combination of islets with bone marrow mesenchymal stem cells promotes angiogenesis[J]. Biomed Pharmacother, 2016, 78: 156-164.
23
Cunha JP, Leuckx G, Sterkendries P, et al. Human multipotent adult progenitor cells enhance islet function and revascularisation when co-transplanted as a composite pellet in a mouse model of diabetes[J]. Diabetologia, 2017, 60(1): 134-142.
24
Hajizadeh-Saffar E, Tahamtani Y, Aghdami N, et al. Inducible VEGF expression by human embryonic stem cell-derived mesenchymal stromal cells reduces the minimal islet mass required to reverse diabetes[J]. Sci Rep, 2015, 5: 9322.
25
Kuljanin M, Bell GI, Sherman SE, et al. Proteomic characterisation reveals active Wnt-signalling by human multipotent stromal cells as a key regulator of beta cell survival and proliferation[J]. Diabetologia, 2017, 60(10): 1987-1998.
26
Ren G, Rezaee M, Razavi M, et al. Adipose tissue-derived mesenchymal stem cells rescue the function of islets transplanted in sub-therapeutic numbers via their angiogenic properties[J]. Cell Tissue Res, 2019, 376(3): 353-364.
27
Cavallari G, Olivi E, Bianchi F, et al. Mesenchymal stem cells and islet cotransplantation in diabetic rats: improved islet graft revascularization and function by human adipose tissue-derived stem cells preconditioned with natural molecules[J]. Cell Transplant, 2012, 21(12): 2771-2781.
28
Le Blanc K, Davies LC. Mesenchymal stromal cells and the innate immune response[J]. Immunol Lett, 2015, 168(2): 140-146.
29
Favaro E, Carpanetto A, Caorsi C, et al. Human mesenchymal stem cells and derived extracellular vesicles induce regulatory dendritic cells in type 1 diabetic patients[J]. Diabetologia, 2016, 59(2): 325-333.
30
Mohammadi Ayenehdeh J, Niknam B, Rasouli S, et al. Immunomodulatory and protective effects of adipose tissue-derived mesenchymal stem cells in an allograft islet composite transplantation for experimental autoimmune type 1 diabetes[J]. Immunol Lett, 2017, 188: 21-31.
31
Reading JL, Yang JH, Sabbah S, et al. Clinical-grade multipotent adult progenitor cells durably control pathogenic T cell responses in human models of transplantation and autoimmunity[J]. J Immunol, 2013, 190(9): 4542-4552.
32
Ezquer F, Ezquer M, Contador D, et al. The antidiabetic effect of mesenchymal stem cells is unrelated to their transdifferentiation potential but to their capability to restore Th1/Th2 balance and to modify the pancreatic microenvironment[J]. Stem Cells, 2012, 30(8): 1664-1674.
33
Chen T, Yuan J, Duncanson S, et al. Alginate encapsulant incorporating CXCL12 supports long-term allo- and xenoislet transplantation without systemic immune suppression[J]. Am J Transplant, 2015, 15(3): 618-627.
34
Kim JY, Park M, Kim YH, et al. Tonsil-derived mesenchymal stem cells (T-MSCs) prevent Th17-mediated autoimmune response via regulation of the programmed death-1/programmed death ligand-1 (PD-1/PD-L1) pathway[J]. J Tissue Eng Regen Med, 2018, 12(2): e1022-e1033.
35
Yen BL, Yen ML, Hsu PJ, et al. Multipotent human mesenchymal stromal cells mediate expansion of myeloid-derived suppressor cells via hepatocyte growth factor/c-met and STAT3[J]. Stem Cell Reports, 2013, 1(2): 139-151.
36
Ben Nasr M, Vergani A, Avruch J, et al. Co-transplantation of autologous MSCs delays islet allograft rejection and generates a local immunoprivileged site[J]. Acta Diabetol, 2015, 52(5): 917-927.
37
Ben Nasr M, Vergani A, Avruch J, et al. 4-phenylbutyric acid attenuates endoplasmic reticulum stress-mediated pancreatic β-cell apoptosis in rats with streptozotocin-induced diabetes[J]. Endocrine, 2014, 47(1): 129-137.
38
Negi S, Park Sh, Jetha A, et al. Evidence of endoplasmic reticulum stress mediating cell death in transplanted human islets[J]. Cell transplant, 2012, 21(5): 889-900.
39
He Y, Zhang D, Zeng Y, et al. Bone marrow-derived mesenchymal stem cells protect islet grafts against endoplasmic reticulum stress-induced apoptosis during the early stage after transplantation[J]. Stem Cells, 2018, 36(7): 1045-1061.
40
Chen J, Chen J, Cheng Y, et al. Mesenchymal stem cell-derived exosomes protect beta cells against hypoxia-induced apoptosis via miR-21 by alleviating ER stress and inhibiting p38 MAPK phosphorylation[J]. Stem Cell Res Ther, 2020, 11(1): 97.
41
Zhu XY, Urbieta-Caceres V, Krier JD, et al. Mesenchymal stem cells and endothelial progenitor cells decrease renal injury in experimental swine renal artery stenosis through different mechanisms[J]. Stem Cells, 2013, 31(1): 117-125.
[1] 曹雯佳, 刘学兵, 罗安果, 钟释敏, 邓岚, 王玉琳, 李赵欢. 超声矢量血流成像对2型糖尿病患者颈动脉壁剪切应力的研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 709-717.
[2] 王杰, 袁泉, 王玥琦, 乔佳君, 谭春丽, 夏仲元, 刘守尧. 溃疡油在糖尿病足溃疡治疗中的应用效果及安全性观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 480-484.
[3] 徐志刚, 曹涛, 何亭, 李博奥, 魏婧韬, 张栋梁, 官浩, 杨薛康. 采用抗生素骨水泥治疗糖尿病患者心脏术后胸骨骨髓炎的临床效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 498-502.
[4] 姜珊, 李湘燕, 田硕涵, 温冰, 何睿, 齐心. 采用优化抗感染治疗模式改善糖尿病足感染预后的临床观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 398-403.
[5] 别瑶, 曹志斌, 辛静, 王健楠, 惠宗光. 应用基质血管成分细胞治疗糖尿病足溃疡的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 453-456.
[6] 孟令凯, 李大勇, 王宁, 王桂明, 张炳南, 李若彤, 潘立峰. 袖状胃切除术对肥胖伴2型糖尿病大鼠的作用及机制研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 638-642.
[7] 李猛, 姜腊, 董磊, 吴情, 贾犇黎. 腹腔镜胃袖状切除术治疗肥胖合并2型糖尿病及脂肪胰的临床研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 554-557.
[8] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[9] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[10] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[11] 严虹霞, 王晓娟, 张毅勋. 2 型糖尿病对结直肠癌患者肿瘤标记物、临床病理及预后的影响[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 483-487.
[12] 周学锋, 董哲毅, 冯哲, 蔡广研, 陈香美. 糖尿病肾脏疾病中西医结合诊疗指南计划书[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 301-305.
[13] 杜军霞, 赵小淋, 王浩然, 高志远, 王曼茜, 万楠熙, 张冬, 丁潇楠, 任琴琴, 段颖洁, 汤力, 朱晗玉. 2 型糖尿病的血液透析患者肠道微生物组学高通量测序分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 313-320.
[14] 程柏凯, 杨光. 高胰岛素-正葡萄糖钳夹技术评估慢性肾脏病患者胰岛素抵抗的研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 334-339.
[15] 邱岭, 朱旭丽, 浦坚, 邢苗苗, 吴佳玲. 糖尿病肾病患者肠道菌群生态特点与胃肠道功能障碍的关联性研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 453-458.
阅读次数
全文


摘要