1 |
Saeedi P, Petersohn I, Salpea P, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition[J]. Diabetes Res Clin Pract, 2019, 157: 107843.
|
2 |
Shapiro AM, Pokrywczynska M, Ricordi C. Clinical pancreatic islet transplantation[J]. Nat Rev Endocrinol, 2017, 13(5): 268-277.
|
3 |
Shapiro AM, Lakey JR, Ryan EA, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen[J]. N Engl J Med, 2000, 343(4): 230-238.
|
4 |
Pepper AR, Bruni A, Shapiro AMJ. Clinical islet transplantation: is the future finally now?[J]. Curr Opin Organ Transplant, 2018, 23(4): 428-439.
|
5 |
Citro A, Cantarelli E, Piemonti L. Anti-inflammatory strategies to enhance islet engraftment and survival[J]. Curr Diab Rep, 2013, 13(5): 733-744.
|
6 |
Brown C, McKee C, Bakshi S, et al. Mesenchymal stem cells: Cell therapy and regeneration potential[J]. J Tissue Eng Regen Med, 2019, 13(9): 1738-1755.
|
7 |
Borg DJ, Weigelt M, Wilhelm C, et al. Mesenchymal stromal cells improve transplanted islet survival and islet function in a syngeneic mouse model[J]. Diabetologia, 2014, 57(3): 522-531.
|
8 |
Newton WC, Kim JW, Luo JZQ, et al. Stem cell-derived exosomes: a novel vector for tissue repair and diabetic therapy[J]. J Mol Endocrinol, 2017, 59(4): R155-R165.
|
9 |
Rackham CL, Dhadda PK, Chagastelles PC, et al. Pre-culturing islets with mesenchymal stromal cells using a direct contact configuration is beneficial for transplantation outcome in diabetic mice[J]. Cytotherapy, 2013, 15(4): 449-459.
|
10 |
Park KS, Kim YS, Kim JH, et al. Trophic molecules derived from human mesenchymal stem cells enhance survival, function, and angiogenesis of isolated islets after transplantation[J]. Transplantation, 2010, 89(5): 509-517.
|
11 |
Rackham CL, Hubber EL, Czajka A, et al. Optimizing beta cell function through mesenchymal stromal cell-mediated mitochondria transfer[J]. Stem cells, 2020, 38(4): 574-584.
|
12 |
de Souza BM, Bouças AP, Oliveira FD, et al. Effect of co-culture of mesenchymal stem/stromal cells with pancreatic islets on viability and function outcomes: a systematic review and meta-analysis[J]. Islets, 2017, 9(2): 30-42.
|
13 |
Arzouni AA, Vargas-Seymour A, Rackham CL, et al. Mesenchymal stromal cells improve human islet function through released products and extracellular matrix[J]. Clin Sci (Lond), 2017, 131(23): 2835-2845.
|
14 |
Olaniru OE, Pingitore A, Giera S, et al. The adhesion receptor GPR56 is activated by extracellular matrix collagen III to improve β-cell function[J]. Cell Mol Life Sci, 2018, 75(21): 4007-4019.
|
15 |
Rackham CL, Amisten S, Persaud SJ, et al. Mesenchymal stromal cell secretory factors induce sustained improvements in islet function pre- and post-transplantation[J]. Cytotherapy, 2018, 20(12): 1427-1436.
|
16 |
Xu TW, Lv ZB, Chen QH, et al. Vascular endothelial growth factor over-expressed mesenchymal stem cells-conditioned media ameliorate palmitate-induced diabetic endothelial dysfunction through PI-3K/AKT/m-TOR/eNOS and p38/MAPK signaling pathway[J]. Biomed Pharmacother, 2018, 106: 491-498.
|
17 |
Zhu GQ, Jeon SH, Lee KW, et al. Engineered stem cells improve neurogenic bladder by overexpressing SDF-1 in a pelvic nerve injury rat model[J]. Cell Transplant, 2020, 29: 963689720902466.
|
18 |
Hu C, Li L, Preconditioning influences mesenchymal stem cell properties in vitro and in vivo[J]. J Cell Mol Med, 2018, 22(3): 1428-1442.
|
19 |
Wen D, Peng Y, Liu D, et al. Mesenchymal stem cell and derived exosome as small RNA carrier and immunomodulator to improve islet transplantation[J]. J Control Release, 2016, 238: 166-175.
|
20 |
Nie W, Ma X, Yang C, et al. Human mesenchymal-stem-cells-derived exosomes are important in enhancing porcine islet resistance to hypoxia[J]. Xenotransplantation, 2018, 25(5): e12405.
|
21 |
Pepper AR, Gala-Lopez B, Ziff O, et al., Revascularization of transplanted pancreatic islets and role of the transplantation site[J]. Clin Dev Immunol, 2013: 352315.
|
22 |
Cao XK, Li R, Sun W, et al. Co-combination of islets with bone marrow mesenchymal stem cells promotes angiogenesis[J]. Biomed Pharmacother, 2016, 78: 156-164.
|
23 |
Cunha JP, Leuckx G, Sterkendries P, et al. Human multipotent adult progenitor cells enhance islet function and revascularisation when co-transplanted as a composite pellet in a mouse model of diabetes[J]. Diabetologia, 2017, 60(1): 134-142.
|
24 |
Hajizadeh-Saffar E, Tahamtani Y, Aghdami N, et al. Inducible VEGF expression by human embryonic stem cell-derived mesenchymal stromal cells reduces the minimal islet mass required to reverse diabetes[J]. Sci Rep, 2015, 5: 9322.
|
25 |
Kuljanin M, Bell GI, Sherman SE, et al. Proteomic characterisation reveals active Wnt-signalling by human multipotent stromal cells as a key regulator of beta cell survival and proliferation[J]. Diabetologia, 2017, 60(10): 1987-1998.
|
26 |
Ren G, Rezaee M, Razavi M, et al. Adipose tissue-derived mesenchymal stem cells rescue the function of islets transplanted in sub-therapeutic numbers via their angiogenic properties[J]. Cell Tissue Res, 2019, 376(3): 353-364.
|
27 |
Cavallari G, Olivi E, Bianchi F, et al. Mesenchymal stem cells and islet cotransplantation in diabetic rats: improved islet graft revascularization and function by human adipose tissue-derived stem cells preconditioned with natural molecules[J]. Cell Transplant, 2012, 21(12): 2771-2781.
|
28 |
Le Blanc K, Davies LC. Mesenchymal stromal cells and the innate immune response[J]. Immunol Lett, 2015, 168(2): 140-146.
|
29 |
Favaro E, Carpanetto A, Caorsi C, et al. Human mesenchymal stem cells and derived extracellular vesicles induce regulatory dendritic cells in type 1 diabetic patients[J]. Diabetologia, 2016, 59(2): 325-333.
|
30 |
Mohammadi Ayenehdeh J, Niknam B, Rasouli S, et al. Immunomodulatory and protective effects of adipose tissue-derived mesenchymal stem cells in an allograft islet composite transplantation for experimental autoimmune type 1 diabetes[J]. Immunol Lett, 2017, 188: 21-31.
|
31 |
Reading JL, Yang JH, Sabbah S, et al. Clinical-grade multipotent adult progenitor cells durably control pathogenic T cell responses in human models of transplantation and autoimmunity[J]. J Immunol, 2013, 190(9): 4542-4552.
|
32 |
Ezquer F, Ezquer M, Contador D, et al. The antidiabetic effect of mesenchymal stem cells is unrelated to their transdifferentiation potential but to their capability to restore Th1/Th2 balance and to modify the pancreatic microenvironment[J]. Stem Cells, 2012, 30(8): 1664-1674.
|
33 |
Chen T, Yuan J, Duncanson S, et al. Alginate encapsulant incorporating CXCL12 supports long-term allo- and xenoislet transplantation without systemic immune suppression[J]. Am J Transplant, 2015, 15(3): 618-627.
|
34 |
Kim JY, Park M, Kim YH, et al. Tonsil-derived mesenchymal stem cells (T-MSCs) prevent Th17-mediated autoimmune response via regulation of the programmed death-1/programmed death ligand-1 (PD-1/PD-L1) pathway[J]. J Tissue Eng Regen Med, 2018, 12(2): e1022-e1033.
|
35 |
Yen BL, Yen ML, Hsu PJ, et al. Multipotent human mesenchymal stromal cells mediate expansion of myeloid-derived suppressor cells via hepatocyte growth factor/c-met and STAT3[J]. Stem Cell Reports, 2013, 1(2): 139-151.
|
36 |
Ben Nasr M, Vergani A, Avruch J, et al. Co-transplantation of autologous MSCs delays islet allograft rejection and generates a local immunoprivileged site[J]. Acta Diabetol, 2015, 52(5): 917-927.
|
37 |
Ben Nasr M, Vergani A, Avruch J, et al. 4-phenylbutyric acid attenuates endoplasmic reticulum stress-mediated pancreatic β-cell apoptosis in rats with streptozotocin-induced diabetes[J]. Endocrine, 2014, 47(1): 129-137.
|
38 |
Negi S, Park Sh, Jetha A, et al. Evidence of endoplasmic reticulum stress mediating cell death in transplanted human islets[J]. Cell transplant, 2012, 21(5): 889-900.
|
39 |
He Y, Zhang D, Zeng Y, et al. Bone marrow-derived mesenchymal stem cells protect islet grafts against endoplasmic reticulum stress-induced apoptosis during the early stage after transplantation[J]. Stem Cells, 2018, 36(7): 1045-1061.
|
40 |
Chen J, Chen J, Cheng Y, et al. Mesenchymal stem cell-derived exosomes protect beta cells against hypoxia-induced apoptosis via miR-21 by alleviating ER stress and inhibiting p38 MAPK phosphorylation[J]. Stem Cell Res Ther, 2020, 11(1): 97.
|
41 |
Zhu XY, Urbieta-Caceres V, Krier JD, et al. Mesenchymal stem cells and endothelial progenitor cells decrease renal injury in experimental swine renal artery stenosis through different mechanisms[J]. Stem Cells, 2013, 31(1): 117-125.
|