切换至 "中华医学电子期刊资源库"

中华移植杂志(电子版) ›› 2021, Vol. 15 ›› Issue (03) : 129 -135. doi: 10.3877/cma.j.issn.1674-3903.2021.03.001

论著

两种国际心脏移植风险评分模型在阜外医院心脏移植人群的适用性评价
郑珊珊1, 唐汉韡1, 黄洁2, 廖仲恺2, 郑哲1, 宋云虎1, 刘盛1,()   
  1. 1. 100037 北京,中国医学科学院阜外医院心脏外科
    2. 100037 北京,中国医学科学院阜外医院心衰与移植病房
  • 收稿日期:2021-01-14 出版日期:2021-06-25
  • 通信作者: 刘盛
  • 基金资助:
    国家重点研发计划项目(2016YFC1300900)

Evaluation the applicability of two international preoperative heart transplant risk scoring models in Fuwai Hospital heart transplant population

Shanshan Zheng1, Hanwei Tang1, Jie Huang2, Zhongkai Liao2, Zhe Zheng1, Yunhu Song1, Sheng Liu1,()   

  1. 1. Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing 100037, China
    2. Department of Heart Failure and Heart Transplant, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing 100037, China
  • Received:2021-01-14 Published:2021-06-25
  • Corresponding author: Sheng Liu
引用本文:

郑珊珊, 唐汉韡, 黄洁, 廖仲恺, 郑哲, 宋云虎, 刘盛. 两种国际心脏移植风险评分模型在阜外医院心脏移植人群的适用性评价[J/OL]. 中华移植杂志(电子版), 2021, 15(03): 129-135.

Shanshan Zheng, Hanwei Tang, Jie Huang, Zhongkai Liao, Zhe Zheng, Yunhu Song, Sheng Liu. Evaluation the applicability of two international preoperative heart transplant risk scoring models in Fuwai Hospital heart transplant population[J/OL]. Chinese Journal of Transplantation(Electronic Edition), 2021, 15(03): 129-135.

目的

评估心脏移植术后死亡率预测指数(IMPACT)和器官分配联合网络(UNOS)评分模型在中国医学科学院阜外医院(以下简称阜外医院)心脏移植人群中的适用性。

方法

回顾性分析2005年1月至2019年12月在阜外医院行心脏移植的914例受者临床资料。主要结局指标为心脏移植术后1年全因死亡率,次要结局指标为院内死亡率。根据IMPACT和UNOS评分模型计算每例受者风险评分及心脏移植术后1年预测死亡率。将阜外医院心脏移植人群按移植时间分为2005至2009年、2010至2014年及2015至2019年3个亚组。根据IMPACT得分为<5分、5~<10分和≥10分以及UNOS得分为0~2分、3~5分、>5分分别将受者分为低危、中危和高危组。组间正态分布计量资料采用成组t检验或单因素方差分析进行比较,非正态分布计量资料采用Mann-Whitney U检验比较,计数资料采用卡方检验进行比较。采用二元Logistic回归分析IMPACT和UNOS评分与阜外医院心脏移植人群移植后院内及术后1年死亡风险相关性。采用受试者工作特征(ROC)曲线评估IMPACT和UNOS评分模型对阜外医院心脏移植人群及基于移植时间分类的亚组移植术后1年死亡率的预测效能,计算曲线下面积(AUC)。采用Kaplan-Meier法绘制基于IMPACT和UNOS评分模型分组的低、中和高危组阜外医院心脏移植受者生存曲线,并采用log-rank检验进行比较。P<0.05为差异有统计学意义。

结果

阜外医院心脏移植队列中位IMPACT评分模型得分为3分(0~26分),中位UNOS评分模型得分为3分(0~11分)。Logistic回归分析结果提示,IMPACT和UNOS评分模型得分升高与受者移植后院内死亡风险增加[(OR=1.25,95%CI:1.18~1.34,P<0.05)和(OR=1.77,95%CI:1.48~2.12,P<0.05)]和术后1年死亡风险增加[(OR=1.21,95%CI:1.13~1.28,P<0.05)和(OR=1.58,95%CI:1.35~1.84,P<0.05)]均相关。IMPACT评分模型预测术后1年死亡率为9.91%,校正系数为0.65。UNOS评分模型预测术后1年死亡率为11.20%,校正系数为0.58。IMPACT评分模型预测阜外医院心脏移植队列1年死亡ROC AUC为0.662(95%CI:0.587~0.736,P<0.05),当截断值=0.10,敏感度为49.2%,特异度为72.9%。UNOS评分模型预测阜外医院心脏移植队列1年死亡ROC AUC为0.661(95%CI:0.586至0.736,P<0.05),当截断值=0.10,敏感度为81.4%,特异度为40.0%。IMPACT评分模型预测2005至2009年、2010至2014年及2015至2019年时间段阜外医院心脏移植人群1年死亡ROC AUC均<0.7;UNOS评分模型预测2005至2009年时间段阜外医院心脏移植人群1年死亡ROC AUC为0.799,预测2010至2014年及2015至2019年时间段的ROC AUC均<0.7。基于IMPACT评分模型分组的阜外医院低、中和高危组心脏移植受者院内死亡率分别为2.9%、5.3%和34.3%,术后1年死亡率分别为4.6%、7.5%和34.3%,差异均有统计学意义(χ2=73.2和49.1,P均<0.05);预测术后1年死亡率分别为7.8%、12.4%和32.1%。基于UNOS评分模型分组的低、中和高危组心脏移植受者院内死亡率分别为1.7%、4.5%和28.0%,术后1年死亡率分别为3.1%、6.7%和28.0%,差异均有统计学意义(χ2=67.7和45.0,P均<0.05);预测术后1年死亡率分别为7.0%、13.0%和22.0%。基于IMPACT评分模型分组的阜外医院低、中和高危组心脏移植受者术后10年生存率分别为79.0%、72.5%、52.3%,差异有统计学意义(χ2=26.7,P<0.05);基于UNOS评分模型分组的阜外医院低、中和高危组心脏移植受者术后10年生存率分别为82.0%、76.4%、57.3%,差异有统计学意义(χ2=29.4,P<0.05)。

结论

IMPACT和UNOS评分模型在一定程度上可反映中国心脏移植受者手术风险,但准确性欠佳。亟待建立一个适用于中国心脏移植受者术后生存风险预测模型。

Objective

To evaluate the applicability of the index for mortality prediction after cardiac transplantation (IMPACT) and the United Organ Allocation Network (UNOS) scoring model in the heart transplant population of Fuwai Hospital of Chinese Academy of Medical Sciences (hereinafter referred to as Fuwai Hospital).

Methods

The clinical data of 914 recipients underwent heart transplant in Fuwai Hospital from January 2005 to December 2019 were retrospectively analyzed. The primary outcome was post-transplant 1-year all-cause mortality, and the secondary outcome was the in-hospital mortality. The risk score of each recipient and the 1-year predicted mortality were calculated according to the IMPACT and UNOS scoring models. Total 914 recipients were divided into three subgroups according to the time of transplantation: 2005-2009, 2010-2014 and 2015-2019. The 914 recipients were also divided into low-risk, intermediate-risk and high-risk groups based on IMPACT scores of <5, 5-<10, and ≥10 points, and UNOS scores of 0-2, 3-5, and >5 points. Normally distributed measurement data between groups were compared by group t test or one-way analysis of variance, non-normally distributed measurement data were compared by Mann-Whitney U test, and count data were compared by Chi-square test. Binary Logistic regression was used to analyze the correlation between IMPACT and UNOS score values and the in-hospital and 1-year postoperative mortality. The receiver operating characteristic (ROC) curve was used to evaluate the predictive performance of IMPACT and UNOS scoring models on the 1-year mortality rate of 914 recipients and the subgroups, and the area under curve (AUC) was calculated. The Kaplan-Meier method was used to draw survival curves of heart transplant recipients in the low-, intermediate- and high-risk groups, and the log-rank test was used for comparison. P<0.05 indicates that the difference is statistically significant.

Results

The median IMPACT score of the Fuwai Hospital heart transplant cohort was 3 points (0-26 points), and the median UNOS score was 3 points (0-11 points). Logistic regression analysis results suggest that the increased IMPACT and UNOS scores are correlated with increased risk for in-hospital mortality [(OR=1.25, 95%CI: 1.18-1.34, P<0.05) and (OR=1.77, 95%CI: 1.48-2.12), P<0.05)] and 1-year mortality [(OR=1.21, 95%CI: 1.13-1.28, P<0.05) and (OR=1.58, 95%CI: 1.35-1.84, P<0.05)]. The 1-year mortality rates of 914 recipients predicted by IMPACT and UNOS score were 9.91% and 11.20% respectively, and the correction coefficients were 0.65 and 0.58 respectively. The ROC AUC of the IMPACT score for prediction of 1-year mortality was 0.662 (95% CI: 0.587-0.736, P<0.05), and the sensitivity was 49.2% and the specificity was 72.9% when the cut-off value was 0.10. The ROC AUC of the UNOS score for prediction of 1-year mortality was 0.661 (95% CI: 0.586-0.736, P<0.05), and the sensitivity was 81.4% and the specificity was 40.0% when the cut-off value was 0.10. The prediction efficacies of the IMPACT and UNOS scores were both poor, with the ROC AUC was less than 0.7 in population of different periods except for the UNOS score used in the population underwent heart transplant in the period of 2005-2009 (AUC=0.799). Based on the IMPACT score, the in-hospital mortality rates in the low-, intermediate-, and high-risk groups were 2.9%, 5.3%, and 34.3%, and the 1-year mortality rates were 4.6%, 7.5%, and 34.3%, the differences were both statistically significant (χ2=73.2 and 49.1, all P<0.05); the predicted 1-year mortality rates were 7.8%, 12.4%, and 32.1% respectively. Based on the UNOS scoring model, the in-hospital mortality rates in the low-, intermediate-, and high-risk groups were 1.7%, 4.5%, and 28.0%, and the 1-year mortality rates were 3.1%, 6.7%, and 28.0%, the differences were both statistically significant (χ2=67.7 and 45.0, all P<0.05); the predicted 1-year mortality rates were 7.0%, 13.0%, and 22.0%, respectively. Based on the IMPACT scoring model, the 10-year survival rates of the low-, intermediate-, and high-risk groups were 79.0%, 72.5%, and 52.3%, respectively, and the difference was statistically significant (χ2= 26.7, P<0.05); Based on the UNOS scoring model, the 10-year long-term survival rates of low-, intermediate- and high-risk groups were 82.0%, 76.4%, and 57.3%, respectively, and the difference was statistically significant (χ2= 29.4, P<0.05).

Conclusions

The IMPACT and UNOS scoring models can reflect the surgical risk of Chinese heart transplant recipients to a certain extent, but the accuracy is not good. It is urgent to establish a survival risk prediction model suitable for Chinese heart transplant recipients.

表1 IMPACT和UNOS评分模型危险因素赋值情况
表2 阜外医院心脏移植队列与UNOS队列临床资料比较
图1 IMPACT和UNOS评分模型预测阜外医院心脏移植队列移植术后1年死亡受试者工作特征曲线
表3 基于IMPACT评分模型分组的低、中和高危组阜外医院心脏移植受者院内和术后1年死亡率[例(%)]
表4 基于UNOS评分模型分组的低、中和高危组阜外医院心脏移植受者院内和术后1年死亡率[例(%)]
图2 基于IMPACT和UNOS评分模型分组的低、中和高危组阜外医院心脏移植受者远期生存曲线
1
Hao G, Wang X, Chen Z, et al. Prevalence of heart failure and left ventricular dysfunction in China: the China Hypertension Survey, 2012-2015[J]. Eur J Heart Fail, 2019, 21(11): 1329-1337.
2
Massad MG. Current trends in heart transplantation[J]. Cardiology, 2004, 101(1-3): 79-92.
3
Stevenson LW. Crisis awaiting heart transplantation: sinking the lifeboat[J]. JAMA Intern Med, 2015, 175(8): 1406-1409.
4
Wittwer T, Wahlers T. Marginal donor grafts in heart transplantation: lessons learned from 25 years of experience[J]. Transpl Int, 2008, 21(2): 113-125.
5
Gambino A. Challenges in heart transplantation: now and the future[J]. Transplant Proc, 2003, 35(8): 3069-3071.
6
Kilic A, Allen JG, Weiss ES. Validation of the United States-derived index for mortality prediction after cardiac transplantation (IMPACT) using international registry data[J]. J Heart Lung Transplant, 2013, 32(5): 492-498.
7
Smits JM, De Pauw M, de Vries E, et al. Donor scoring system for heart transplantation and the impact on patient survival[J]. J Heart Lung Transplant, 2012, 31(4): 387-397.
8
Joyce DL, Li Z, Edwards LB, et al. Predicting 1-year cardiac transplantation survival using a donor-recipient risk-assessment tool[J]. J Thorac Cardiovasc Surg, 2018, 155(4): 1580-1590.
9
Belli E, Leoni MJ, Hosenpud J, et al. Preoperative risk factors predict survival following cardiac retransplantation: analysis of the United Network for Organ Sharing database[J]. J Thorac Cardiovasc Surg, 2014, 147(6): 1972-1977, 1977 .e1.
10
Weiss ES, Allen JG, Kilic A, et al. Development of a quantitative donor risk index to predict short-term mortality in orthotopic heart transplantation[J]. J Heart Lung Transplant, 2012, 31(3): 266-273.
11
Trivedi JR, Cheng A, Ising M, et al. Heart transplant survival based on recipient and donor risk scoring: A UNOS database analysis[J]. ASAIO J, 2016, 62(3): 297-301.
12
Hanley JA, Mcneil BJ. A method of comparing the areas under receiver operating characteristic curves derived from the same cases[J]. Radiology, 1983, 148(3): 839-843.
13
Weiss ES, Allen JG, Arnaoutakis GJ, et al. Creation of a quantitative recipient risk index for mortality prediction after cardiac transplantation (IMPACT)[J]. Ann Thorac Surg, 2011, 92(3): 914-922.
14
Khush KK. Donor selection in the modern era[J]. Ann Cardiothorac Surg, 2018, 7(1): 126-134.
15
Hsich EM, Thuita L, Mcnamara DM, et al. Variables of importance in the Scientific Registry of Transplant Recipients database predictive of heart transplant waitlist mortality[J]. Am J Transplant, 2019, 19(7): 2067-2076.
16
Hsich EM, Blackstone EH, Thuita LW, et al. Heart Transplantation: An in-depth survival analysis[J]. JACC Heart Fail, 2020, 8(7): 557-568.
17
Hayes DJ, Cherikh WS, Chambers DC, et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: Twenty-second pediatric lung and heart-lung transplantation report-2019; Focus theme: Donor and recipient size match[J]. J Heart Lung Transplant, 2019, 38(10): 1015-1027.
[1] 周容, 张亚萍, 廖宇, 程晓萍, 管玉龙, 潘广玉, 闫杰, 王贤芝, 苟中山, 潘登科, 李巅远. 超声在基因编辑猪-猴异种并联式心脏移植术中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 617-623.
[2] 黄鸿初, 黄美容, 温丽红. 血液系统恶性肿瘤患者化疗后粒细胞缺乏感染的危险因素和风险预测模型[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(05): 285-292.
[3] 张伟, 孙浩亮. 心脏移植术后继发带状疱疹致Ogilvie综合征一例[J/OL]. 中华移植杂志(电子版), 2024, 18(04): 239-241.
[4] 陆婷, 陈浩, 王雪静, 谭若芸, 彭宇竹. 肾移植术后一年发生代谢综合征的危险因素分析[J/OL]. 中华移植杂志(电子版), 2024, 18(02): 98-103.
[5] 潘裕华, 李锐钊, 刘菊娥, 曾英彤, 钟诗龙, 赖伟华. 心脏移植术后急性肾损伤再发低血药浓度他克莫司致慢性肾毒性一例[J/OL]. 中华移植杂志(电子版), 2024, 18(01): 40-44.
[6] 王石林, 叶继章, 丘向艳, 陈桂青, 邹晓敏. 慢性阻塞性肺疾病真菌感染风险早期预测分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 773-776.
[7] 袁延丽, 屈卓军, 崔会慧, 王菁, 高贝贝, 潘院. 原发性肺癌切除术后谵妄的危险因素及预后分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 701-706.
[8] 吴洁柔, 王琴, 张静, 周耿标, 赖芳, 韩云. 体质量指数、血清白蛋白联合mNUTRIC评分对重症肺炎预后的意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 392-396.
[9] 周文欢, 杨黎. AECOPD低钠血症发生风险及预测因素分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(02): 313-315.
[10] 董力, 李赫妍, 魏文斌. 人工智能在糖尿病视网膜病变中的应用进展[J/OL]. 中华眼科医学杂志(电子版), 2024, 14(01): 57-61.
[11] 蔡晓雯, 李慧景, 丘婕, 杨翼帆, 吴素贤, 林玉彤, 何秋娜. 肝癌患者肝动脉化疗栓塞术后疼痛风险预测模型的构建及验证[J/OL]. 中华临床医师杂志(电子版), 2024, 18(08): 722-728.
[12] 李冰冰, 张晓萌, 张艳. 住院患者跌倒风险评估工具及预测模型研究进展[J/OL]. 中华临床医师杂志(电子版), 2023, 17(11): 1192-1195.
[13] 席静妮, 李娜, 张琪. 中性粒细胞与淋巴细胞比值对老年重症社区获得性肺炎进展为脓毒症的预测价值[J/OL]. 中华老年病研究电子杂志, 2024, 11(03): 28-31.
[14] 曹娟, 朱亚, 吴玉泉, 胡旭钢, 董芳, 洪逸莲, 桂莹. 改良Morse跌倒评估量表对老年住院患者跌倒风险的预测价值[J/OL]. 中华老年病研究电子杂志, 2024, 11(02): 1-4.
[15] 解艳红, 陈凌燕, 邵晓露, 沈珊珊, 李方舟, 蓝肖燕. 老年住院患者衰弱风险预测模型研究进展[J/OL]. 中华老年病研究电子杂志, 2024, 11(01): 11-17.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?