切换至 "中华医学电子期刊资源库"

中华移植杂志(电子版) ›› 2023, Vol. 17 ›› Issue (03) : 186 -191. doi: 10.3877/cma.j.issn.1674-3903.2023.03.011

综述

猪器官异种移植研究进展
艾紫叶, 李玲, 何重香, 黄伟, 叶啟发()   
  1. 430071 武汉大学中南医院,武汉大学肝胆疾病研究院,武汉大学移植医学中心,移植医学技术湖北省重点实验室,湖北省天然高分子生物肝临床医学研究中心
    430071 武汉大学中南医院,武汉大学肝胆疾病研究院,武汉大学移植医学中心,移植医学技术湖北省重点实验室,湖北省天然高分子生物肝临床医学研究中心;410013 长沙,中南大学湘雅三医院,卫生部移植医学工程技术研究中心
  • 收稿日期:2023-01-30 出版日期:2023-06-25
  • 通信作者: 叶啟发
  • 基金资助:
    2021年湖北省自然科学基金青年基金(2021CFB062); 2023武汉大学自然科学自主科研项目(2042023kf0064); 武汉大学中南医院2022年度医学科技创新平台建设匹配经费(PTPP2022007)

Research progress on xenotransplantation form pig organs

Ziye Ai, Ling Li, Chongxiang He, Wei Huang, Qifa Ye()   

  1. Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan 430071, China
    Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan 430071, China; The 3rd Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha 410013, China
  • Received:2023-01-30 Published:2023-06-25
  • Corresponding author: Qifa Ye
引用本文:

艾紫叶, 李玲, 何重香, 黄伟, 叶啟发. 猪器官异种移植研究进展[J]. 中华移植杂志(电子版), 2023, 17(03): 186-191.

Ziye Ai, Ling Li, Chongxiang He, Wei Huang, Qifa Ye. Research progress on xenotransplantation form pig organs[J]. Chinese Journal of Transplantation(Electronic Edition), 2023, 17(03): 186-191.

由于供器官的匮乏,每年有众多急性或慢性器官功能衰竭患者在等待移植的过程中死亡。尽管各种体外支持系统——如人工肝系统及透析系统在临床上广泛应用,但仅可作为移植过渡治疗,并不能解决患者根本问题,拓展移植器官来源显得尤为重要。异种移植一直是器官移植学界不懈探索的重点与难点技术之一,转基因猪作为最有应用前景的临床异种移植器官来源动物之一,受到广泛关注。目前已有多项非人类灵长类动物实验证实异种器官移植的有效性,然而尚缺乏足够的临床前试验验证其在人体内的安全性及有效性。本文综述猪器官异种移植现状及面临的问题,以期为终末期器官衰竭治疗提供新的视角。

Because of the shortage of donor organs, numerous patients with acute or chronic organ failure died each year while waiting for transplantation. Although various extracorporeal support systems, such as artificial liver system and dialysis system, are widely used in clinical practice, they can only be used as transplant transition therapy and can not solve the fundamental problems of patients, and it is particularly important to expand the source of transplanted organs. Xenotransplantation has always been one of the key and difficult techniques unremittingly explored by the organ transplantation community, and transgenic pigs as one of the most promising organ donor sources for clinical xenotransplantation organs have received much attention. At present, a number of non-human primate experiments have confirmed the effectiveness of xenotransplantation, but there is still a lack of sufficient preclinical trials to verify its safety and effectiveness in humans. This article reviews the current status and problems faced by pig organ xenotransplantation in order to provide a new perspective on the treatment of end-stage organ failure.

1
Roux FA, Saï P, Deschamps JY. Xenotransfusions, past and present[J]. Xenotransplantation, 200714(3):208-216.
2
Cooper DK, Gollackner B, Sachs DH. Will the pig solve the transplantation backlog?[J]. Annu Rev Med, 200253:133-147.
3
Lunney JK, Van Goor A, Walker KE, et al. Importance of the pig as a human biomedical model[J]. Sci Transl Med, 202113(621):eabd5758.
4
Cooper DK. A brief history of cross-species organ transplantation[J]. Proc (Bayl Univ Med Cent), 201225(1):49-57.
5
Chiche L, Adam R, Caillat-Zucman S, et al. Xenotransplantation: baboons as potential liver donors? Scientific and ethical issues[J]. Transplantation, 199355(6):1418-1421.
6
Montgomery RA, Mehta SA, Parent B, et al. Next steps for the xenotransplantation of pig organs into humans[J]. Nat Med, 202228(8):1533-1536.
7
Yamamoto T, Iwase H, King TW, et al. Skin xenotransplantation: historical review and clinical potential[J]. Burns, 201844(7):1738-1749.
8
Reemtsma K, McCracken BH, Schlegel JU, et al. Renal heterotransplantation in man[J]. Ann Surg, 1964160(3):384-410.
9
Hardy JD, Kurrus FD, Chavez CM, et al. Heart transplantation in man. Developmental studies and report of a case [J]. JAMA, 1964188:1132-1140.
10
Cooper DKC, Ekser B, Tector AJ. A brief history of clinical xenotransplantation[J]. Int J Surg, 201523(Pt B):205-210.
11
Cooper DK, Ekser B, Ramsoondar J, et al. The role of genetically engineered pigs in xenotransplantation research[J]. J Pathol, 2016238(2):288-299.
12
Lu T, Yang B, Wang R, et al. Xenotransplantation: current status in preclinical research[J]. Front Immunol, 201910:3060.
13
Ryczek N, Hryhorowicz M, Zeyland J, et al. CRISPR/Cas technology in pig-to-human xenotransplantation research[J]. Int J Mol Sci, 202122(6):3196.
14
Lexer G, Cooper DK, Rose AG, et al. Hyperacute rejection in a discordant (pig to baboon) cardiac xenograft model[J]. J Heart Transplant, 19865(6):411-418.
15
Phelps CJ, Koike C, Vaught TD, et al. Production of alpha 1,3-galactosyltransferase-deficient pigs[J]. Science, 2003299(5605):411-414.
16
Mohiuddin MM, Singh AK, Corcoran PC, et al. Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft[J]. Nat Commun, 20167:11138.
17
Brenner P, Mihalj M. Update and breakthrough in cardiac xenotransplantation[J]. Curr Opin Organ Transplant, 202025(3):261-267.
18
Goerlich CE, Griffith B, Singh AK, et al. Blood cardioplegia induction, perfusion storage and graft dysfunction in cardiac xenotransplantation[J]. Front immunol, 202112:667093.
19
DiChiacchio L, Singh AK, Lewis B, et al. Early experience with preclinical perioperative cardiac xenograft dysfunction in a single program[J]. Ann Thorac Surg, 2020109(5):1357-1361.
20
Roberts WC, Kondapalli N, Guileyardo JM. Morphologic findings in donor (transplanted) hearts at necropsy early and late after orthotopic heart transplantation[J]. Am J Cardiol, 2018121(2):217-240.
21
Hinrichs A, Kessler B, Kurome M, et al. Growth hormone receptor-deficient pigs resemble the pathophysiology of human Laron syndrome and reveal altered activation of signaling cascades in the liver[J]. Mol Metab, 201811:113-128.
22
Ekser B, Lin CC, Long C, et al. Potential factors influencing the development of thrombocytopenia and consumptive coagulopathy after genetically modified pig liver xenotransplantation[J]. Transpl Int, 201225(8):882-896.
23
Ekser B, Echeverri GJ, Hassett AC, et al. Hepatic function after genetically engineered pig liver transplantation in baboons[J]. Transplantation, 201090(5):483-493.
24
Kim K, Schuetz C, Elias N, et al. Up to 9-day survival and control of thrombocytopenia following alpha1,3-galactosyl transferase knockout swine liver xenotransplantation in baboons[J]. Xenotransplantation, 201219(4):256-264.
25
Paris LL, Chihara RK, Reyes LM, et al. ASGR1 expressed by porcine enriched liver sinusoidal endothelial cells mediates human platelet phagocytosis in vitro[J]. Xenotransplantation, 201118(4):245-251.
26
Paris LL, Estrada JL, Li P, et al. Reduced human platelet uptake by pig livers deficient in the asialoglycoprotein receptor 1 protein[J]. Xenotransplantation, 201522(3):203-210.
27
Kim SC, Mathews DV, Breeden CP, et al. Long-term survival of pig-to-rhesus macaque renal xenografts is dependent on CD4 T cell depletion[J]. Am J Transplant, 201919(8):2174-2185.
28
Yu XH, Deng WY, Jiang HT, et al. Kidney xenotransplantation: recent progress in preclinical research[J]. Clin Chim Acta, 2021514:15-23.
29
Wang L, Cooper D, Burdorf L, et al. Overcoming coagulation dysregulation in pig solid organ transplantation in nonhuman primates: recent progress[J]. Transplantation, 2018102(7):1050-1058.
30
Dwyer KM, Mysore TB, Crikis S, et al. The transgenic expression of human CD39 on murine islets inhibits clotting of human blood[J]. Transplantation, 200682(3):428-432.
31
Niemann H, Petersen B. The production of multi-transgenic pigs: update and perspectives for xenotransplantation[J]. Transgenic Res, 201625(3):361-374.
32
Nguyen BN, Azimzadeh AM, Zhang T, et al. Life-supporting function of genetically modified swine lungs in baboons[J]. J Thorac Cardiovasc Surg, 2007133(5):1354-1363.
33
Burdorf L, Laird CT, Harris DG, et al. Pig-to-baboon lung xenotransplantation: extended survival with targeted genetic modifications and pharmacologic treatments[J]. Am J Transplant, 202222(1):28-45.
34
Watanabe H, Sahara H, Nomura S, et al. GalT-KO pig lungs are highly susceptible to acute vascular rejection in baboons, which may be mitigated by transgenic expression of hCD47 on porcine blood vessels[J]. Xenotransplantation, 201825(5):e12391.
35
Matsumoto S, Tan P, Baker J, et al. Clinical porcine islet xenotransplantation under comprehensive regulation[J]. Transplant Proc, 201446(6):1992-1995.
36
Liu Z, Hu W, He T, et al. Pig-to-primate islet xenotransplantation: past, present, and future[J]. Cell Transplant, 201726(6):925-947.
37
Galili U. The alpha-gal epitope and the anti-Gal antibody in xenotransplantation and in cancer immunotherapy[J]. Immunol Cell Biol, 200583(6):674-686.
38
Ladowski JM, Houp J, Hauptfeld-Dolejsek V, et al. Aspects of histocompatibility testing in xenotransplantation[J]. Transpl Immunol, 202167:101409.
39
Byrne G, Ahmad-Villiers S, Du Z, et al. B4GALNT2 and xenotransplantation: a newly appreciated xenogeneic antigen[J]. Xenotransplantation, 201825(5):e12394.
40
Estrada JL, Martens G, Li P, et al. Evaluation of human and non-human primate antibody binding to pig cells lacking GGTA1/CMAH/β4GalNT2 genes[J]. Xenotransplantation, 201522(3):194-202.
41
Ierino FL, Sandrin MS. Spectrum of the early xenograft response: from hyperacute rejection to delayed xenograft injury[J]. Crit Rev Immunol, 200727(2):153-166.
42
Zhou Q, Li T, Wang K, et al. Current status of xenotransplantation research and the strategies for preventing xenograft rejection[J]. Front Immunol, 202213:928173.
43
Niemann H, Petersen B. The production of multi-transgenic pigs: update and perspectives for xenotransplantation[J]. Transgenic Res, 201625(3):361-374.
44
Petersen B, Ramackers W, Lucas-Hahn A, et al. Transgenic expression of human heme oxygenase-1 in pigs confers resistance against xenograft rejection during ex vivo perfusion of porcine kidneys[J]. Xenotransplantation, 201118(6):355-68.
45
Sullivan JA, Oettinger HF, Sachs DH, et al. Analysis of polymorphism in porcine MHC class I genes: alterations in signals recognized by human cytotoxic lymphocytes[J]. J Immunol, 1997159(5):2318-2326.
46
Resch T, Fabritius C, Ebner S, et al. The role of natural killer cells in humoral rejection[J]. Transplantation, 201599(7):1335-1340.
47
Vadori M, Cozzi E. The immunological barriers to xenotransplantation[J]. Tissue Antigens, 201586(4):239-253.
48
Iwase H, Ezzelarab MB, Ekser B, et al. The role of platelets in coagulation dysfunction in xenotransplantation, and therapeutic options[J]. Xenotransplantation, 201421(3):201-220.
49
Zelaya H, Rothmeier AS, Ruf W. Tissue factor at the crossroad of coagulation and cell signaling[J]. J Thromb Haemost, 201816(10):1941-1952.
50
Kim H, Hawthorne WJ, Kang HJ, et al. Human thrombomodulin regulates complement activation as well as the coagulation cascade in xeno-immune response[J]. Xenotransplantation, 201522(4):260-272.
51
Ekser B, Long C, Echeverri GJ, et al. Impact of thrombocytopenia on survival of baboons with genetically modified pig liver transplants: clinical relevance[J]. Am J Transplant, 201010(2):273-285.
52
Schulte Am Esch J 2nd, Robson SC, Knoefel WT, et al. O-linked glycosylation and functional incompatibility of porcine von Willebrand factor for human platelet GPIb receptors[J]. Xenotransplantation, 200512(1):30-37.
53
Blasier D, Mayba I, Ferguson C, et al. Metastatic osteosarcoma and multiple lung resection. A case report[J]. J Bone Joint Surg Br, 198668(5):748-750.
54
Paris LL, Chihara RK, Sidner RA, et al. Differences in human and porcine platelet oligosaccharides may influence phagocytosis by liver sinusoidal cells in vitro[J]. Xenotransplantation, 201219(1):31-39.
55
Fishman JA. Infectious disease risks in xenotransplantation[J]. Am J Transplant, 201818(8):1857-1864.
56
Semaan M, Rotem A, Barkai U, et al. Screening pigs for xenotransplantation: prevalence and expression of porcine endogenous retroviruses in Göttingen minipigs[J]. Xenotransplantation, 201320(3):148-156.
57
Denner J, Schuurman HJ. High prevalence of recombinant porcine endogenous retroviruses (PERV-A/Cs) in minipigs: a review on origin and presence[J]. Viruses, 202113(9):1869.
58
Denner J. Why was PERV not transmitted during preclinical and clinical xenotransplantation trials and after inoculation of animals?[J]. Retrovirology, 201815(1):28.
59
Melo H, Brandao C, Rego G, et al. Ethical and legal issues in xenotransplantation[J]. Bioethics, 200115(5-6):427-442.
60
Entwistle JW, Sade RM, Drake DH. Clinical xenotransplantation seems close: ethical issues persist[J]. Artif Organs, 202246(6):987-994.
61
Locke LG. The promise of CRISPR for human germline editing and the perils of " playing God" [J]. CRISPR J, 20203(1):27-31.
62
Raposo VL. The first Chinese edited babies: a leap of faith in science[J]. JBRA Assist Reprod, 201923(3):197-199.
63
Fishman JA. Prevention of infection in xenotransplantation: designated pathogen-free swine in the safety equation[J]. Xenotransplantation, 202027(3):e12595.
[1] 黄钰清, 吴盛正, 陈祥慧, 单雪霞, 林星禧, 张立业, 周璇, 吕发勤. 超声引导下髂动脉破裂出血模型的建立[J]. 中华医学超声杂志(电子版), 2021, 18(04): 407-411.
[2] 李峰, 黎君友. 基因工程猪皮的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(02): 163-166.
[3] 柴家科, 郭希民, 沈显贵. 一种适用于战创伤致命性大出血止血材料的研发[J]. 中华损伤与修复杂志(电子版), 2019, 14(06): 479-480.
[4] 李雯雯, 苏乔, 赵广银, 李武国, 李武, 黄浩机, 李文英. 小型猪腹腔镜手术中不同气腹压力对循环功能的影响[J]. 中华普通外科学文献(电子版), 2020, 14(02): 89-92.
[5] 陈耀, 谭晓宇, 雷志斌, 王春政, 乔明蕊, 李鹏, 何锡然, 邝伟键, 郭家钘, 陈素平, 欧阳青, 何洹, 陈建雄, 霍枫. 便携式在体机械灌注设备运行稳定性及保护无心跳供体器官的实验研究[J]. 中华移植杂志(电子版), 2020, 14(06): 355-360.
[6] 王权成, 吴文龙, 张玄, 窦科峰, 陶开山. 人外周血单个核细胞分泌细胞因子对α-1,3-半乳糖基转移酶基因敲除猪肝细胞的作用[J]. 中华移植杂志(电子版), 2020, 14(03): 182-187.
[7] 刘成, 赖聪, 黄健, 王建辰, 罗茜芸, 许可慰. EDGE SP1000单孔手术机器人辅助腹腔镜下猪输尿管部分切除联合端端吻合术的可行性研究[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(06): 642-646.
[8] 李绍杰, 唐健雄, 校红兵, 华蕾, 黄磊, 平定, 司仙科, 胡星辰, 蔡昭. 静电纺复合生物材料与SIS生物补片在成人腹股沟疝修补术中的多中心比较研究[J]. 中华疝和腹壁外科杂志(电子版), 2020, 14(04): 336-341.
[9] 程文悦, 陈金水, 刘耀婷, 赵美彪, 王强, 张剑. 不同组织来源的生物补片修补腹壁肌部分层次缺损的研究[J]. 中华疝和腹壁外科杂志(电子版), 2019, 13(03): 198-203.
[10] 朱矩琴, 刘媛珍. 牛肺磷脂注射液与猪肺磷脂注射液在新生儿呼吸窘迫综合征中的临床应用[J]. 中华肺部疾病杂志(电子版), 2022, 15(02): 258-260.
[11] 马鹏飞, 孙铄, 高康, 王作伟. 椎管内猪囊尾蚴病一例报道并文献复习[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(03): 185-187.
[12] 陈俊邦, 陈俊伟. 猪尾巴导管缠绕法在输液港导管异位调整中的应用[J]. 中华介入放射学电子杂志, 2021, 09(02): 150-154.
[13] 王楠钧, 柴宁莉, 令狐恩强, 李惠凯, 冯秀雪, 翟亚奇, 刘圣圳, 张文刚, 李隆松, 王沙沙, 王祥耀, 徐宁, 高飞. 活体猪模型在高阶内镜治疗技术培训中的应用价值[J]. 中华胃肠内镜电子杂志, 2022, 09(03): 156-161.
[14] 刘圣圳, 柴宁莉, 令狐恩强, 李惠凯, 冯秀雪, 翟亚奇, 高飞, 王祥耀, 王楠钧, 赵晨怡, 徐宁. 活体猪模型在超级微创内镜隧道法黏膜下剥离手术培训中的应用[J]. 中华胃肠内镜电子杂志, 2022, 09(02): 112-116.
[15] 陈郑玮, 王高祥, 吴汉然, 孙效辉, 李田, 徐美青, 解明然. 猪源纤维黏合剂对胸腔镜肺段切除术患者术后肺漏气的效果[J]. 中华胸部外科电子杂志, 2022, 09(03): 181-185.
阅读次数
全文


摘要