切换至 "中华医学电子期刊资源库"

中华移植杂志(电子版) ›› 2024, Vol. 18 ›› Issue (02) : 65 -73. doi: 10.3877/cma.j.issn.1674-3903.2024.02.001

专家共识

免疫细胞功能状态量化检测评估与临床应用专家共识
中国医疗保健国际交流促进会肝脏移植学分会, 中国医疗保健国际交流促进会肾脏移植学分会, 中国医药生物技术协会生物诊断技术分会   
  1. 1. 100020 首都医科大学附属北京朝阳医院
  • 收稿日期:2024-02-27 出版日期:2024-04-25
  • 基金资助:
    北京市自然科学基金(7232068,7232065); 国家自然科学基金(82370665)

Consensus on quantify monitoring and assessment of immune cell function status and clinical application

China International Exchange and Promotive Association for Medical and Health Care (CPAM), Society of Liver Transplantation,, China International Exchange and Promotive Association for Medical and Health Care (CPAM), Society of Kidney Transplantation;, China Medicinal Biotech Association (CMBA), Society of Biological Diagnostics   

  1. 1. Beijing Chaoyang Hospital of Capital Medical University, Beijing 100020, China
  • Received:2024-02-27 Published:2024-04-25
引用本文:

中国医疗保健国际交流促进会肝脏移植学分会, 中国医疗保健国际交流促进会肾脏移植学分会, 中国医药生物技术协会生物诊断技术分会. 免疫细胞功能状态量化检测评估与临床应用专家共识[J]. 中华移植杂志(电子版), 2024, 18(02): 65-73.

China International Exchange and Promotive Association for Medical and Health Care (CPAM), Society of Liver Transplantation,, China International Exchange and Promotive Association for Medical and Health Care (CPAM), Society of Kidney Transplantation;, China Medicinal Biotech Association (CMBA), Society of Biological Diagnostics. Consensus on quantify monitoring and assessment of immune cell function status and clinical application[J]. Chinese Journal of Transplantation(Electronic Edition), 2024, 18(02): 65-73.

免疫系统是维持机体器官功能健康和预防疾病的重要保障,免疫健康管理和疾病免疫治疗目标是恢复免疫系统的正常功能状态。免疫学领域研究解决了如何抑制或提高免疫状态的技术性难题,随之带来亟需回答的问题是如何全面地检测和量化评估免疫状态,这是下一个挑战,目前国际上尚无成熟解决方案。免疫状态量化检测与可视化评估对疾病防控、亚健康状态管理和疾病免疫治疗均具有重要意义。本专家共识针对正常免疫状态定义和免疫细胞功能状态(免疫力)全面量化评估及可视化评分技术手段等问题进行了初步讨论,提出了正常免疫状态相关的基础概念和思考,探讨免疫细胞功能状态量化检测评估方向和原则,并以此为契机,推动免疫力解码以及免疫健康领域基础课题和临床试验的深入研究。

The immune system is the important guarantee for maintaining the health of organ function and preventing diseases. The goal of immune health management and immune treatment is to restore the normal function of the immune system. The technical problems of how to inhibit or enhance the immune status has been solved in the field of immunology, but how to comprehensively detect and quantitatively evaluate the immune status is still a challenge. There is no mature solution at present. The quantification detection and visualization evaluation of immune status are of great significance for disease prevention and control, sub-health status management, and immune treatment. This expert consensus has carried out preliminary discussions on the definition of normal immune status and the comprehensive quantitative evaluation and visual scoring techniques of immune cell function status (immune function), put forward the basic concepts and thinking related to normal immune status, discussed the direction and principles of quantitative detection and evaluation of immune cell function status, and taken this as an opportunity to promote the decoding of immunity and the study of basic and clinical trials in the field of immune health.

图1 免疫力评分体系评分尺注:0分为免疫平衡状态,负分为免疫抑制,正分为免疫激活
图2 过敏和自身免疫性疾病的免疫细胞功能状态量化评估指导治疗方向选择
1
Dunkelberger JR, Song WC. Complement and its role in innate and adaptive immune responses[J]. Cell Res, 2010, 20(1): 34-50.
2
Netea MG, Domínguez-Andrés J, Barreiro LB, et al. Defining trained immunity and its role in health and disease[J]. Nat Rev Immunol, 2020, 20(6): 375-388.
3
Netea MG, Schlitzer A, Placek K, et al. Innate and adaptive immune memory: an evolutionary continuum in the host′s response to pathogens[J]. Cell Host Microbe, 2019, 25(1): 13-26.
4
Barry KC, Hsu J, Broz ML, et al. A natural killer-dendritic cell axis defines checkpoint therapy-responsive tumor microenvironments[J]. Nat Med, 2018, 24(8): 1178-1191.
5
Pernot S, Terme M, Radosevic-Robin N, et al. Infiltrating and peripheral immune cell analysis in advanced gastric cancer according to the Lauren classification and its prognostic significance[J]. Gastric Cancer, 2020, 23(1): 73-81.
6
Hosseini A, Hashemi V, Shomali N, et al. Innate and adaptive immune responses against coronavirus[J]. Biomed Pharmacother, 2020, 132: 110859.
7
Palmer S, Cunniffe N, Donnelly R. COVID-19 hospitalization rates rise exponentially with age, inversely proportional to thymic T-cell production[J]. J R Soc Interface, 2021, 18(176): 20200982.
8
李先亮,贾亚男,王若麟,等. 创新免疫状态评估体系的建立及其在疾病诊疗中的应用[J].中国现代医学杂志2021, 31(16): 1-6.
9
Kowalski RJ, Post DR, Mannon RB, et al. Assessing relative risks of infection and rejection: a meta-analysis using an immune function assay[J]. Transplantation, 2006, 82(5): 663-668.
10
Palmer S, Albergante L, Blackburn CC, et al. Thymic involution and rising disease incidence with age[J]. Proc Natl Acad Sci U S A, 2018, 115(8): 1883-1888.
11
Le Saux S, Weyand CM, Goronzy JJ. Mechanisms of immunosenescence: lessons from models of accelerated immune aging[J]. Ann N Y Acad Sci, 2012, 1247: 69-82.
12
Sanmamed MF, Chen L. A paradigm shift in cancer immunotherapy: from enhancement to normalization[J]. Cell, 2018, 175(2): 313-326.
13
Feng F, Zheng G, Wang Q, et al. Low lymphocyte count and high monocyte count predicts poor prognosis of gastric cancer[J]. BMC Gastroenterol, 2018, 18(1): 148.
14
李瀚,吕少诚,贾亚男,等. 中性粒细胞/淋巴细胞比值与可切除远端胆管癌远期预后的相关性研究[J]. 解放军医学院学报. 2020, 41(10): 959-962.
15
Fernández-Ruiz M, Kumar D, Humar A. Clinical immune-monitoring strategies for predicting infection risk in solid organ transplantation[J]. Clin Transl Immunology, 2014, 3(2): e12.
16
Meckiff BJ, Ramírez-Suástegui C, Fajardo V, et al. Imbalance of regulatory and cytotoxic SARS-CoV-2-reactive CD4+ T cells in COVID-19[J]. Cell, 2020, 183(5): 1340-1353.
17
Peng X, Ouyang J, Isnard S, et al. Sharing CD4+ T cell loss: when COVID-19 and HIV collide on immune system[J]. Front Immunol, 2020, 11: 596631.
18
Rodrigo E, López-Hoyos M, Corral M, et al. ImmuKnow as a diagnostic tool for predicting infection and acute rejection in adult liver transplant recipients: a systematic review and meta-analysis[J]. Liver Transpl, 2012, 18(10): 1245-1253.
19
Berglund D, Bengtsson M, Biglarnia A, et al. Screening of mortality in transplant patients using an assay for immune function[J]. Transpl Immunol, 2011, 24(4): 246-250.
20
Xue F, Zhang J, Han L, et al. Immune cell functional assay in monitoring of adult liver transplantation recipients with infection[J]. Transplantation, 2010, 89(5): 620-626.
21
黄小慧,张英才,朱曙光,等. Cylex ImmuKnow免疫细胞功能检测在肝移植术后监测中的应用[J]. 中华肝脏外科手术学电子杂志2016, 5(5): 311-314.
22
Quaglia M, Cena T, Fenoglio R, et al. Immune function assay (immunknow) drop over first 6 months after renal transplant: a predictor of opportunistic viral infections?[J]. Transplant Proc, 2014, 46(7): 2220-2223.
23
Ling X, Xiong J, Liang W, et al. Can immune cell function assay identify patients at risk of infection or rejection? A meta-analysis[J]. Transplantation, 2012, 93(7): 737-743.
24
Picarda E, Bézie S, Venturi V, et al. MHC-derived allopeptide activates TCR-biased CD8+ Tregs and suppresses organ rejection[J]. J Clin Invest, 2014, 124(6): 2497-2512.
25
Zheng C, Zheng L, Yoo JK, et al. Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing[J]. Cell, 2017, 169(7): 1342-1356.
26
Zhuo Y, Yang X, Shuai P, et al. Evaluation and comparison of adaptive immunity through analyzing the diversities and clonalities of T-cell receptor repertoires in the peripheral blood[J]. Front Immunol, 2022, 13: 916430.
27
Zhang L, Yu X, Zheng L, et al. Lineage tracking reveals dynamic relationships of T cells in colorectal cancer[J]. Nature, 2018, 564(7735): 268-272.
28
Zhang Y, Chen H, Mo H, et al. Single-cell analyses reveal key immune cell subsets associated with response to PD-L1 blockade in triple-negative breast cancer[J]. Cancer Cell, 2021, 39(12): 1578-1593.
29
Zheng L, Qin S, Si W, et al. Pan-cancer single-cell landscape of tumor-infiltrating T cells[J]. Science, 2021, 374(6574): abe6474.
30
Zhou Z, Wu Q, Yan Z, et al. Extracellular RNA in a single droplet of human serum reflects physiologic and disease states[J]. Proc Natl Acad Sci U S A, 2019, 116(38): 19200-19208.
31
Best MG, Sol N, Kooi I, et al. RNA-seq of tumor-educated platelets enables blood-based pan-cancer, multiclass, and molecular pathway cancer diagnostics[J]. Cancer Cell, 2015, 28(5): 666-676.
32
Muthukumar T, Dadhania D, Ding R, et al. Messenger RNA for FOXP3 in the urine of renal-allograft recipients[J]. N Engl J Med, 2005, 353(22): 2342-2351.
33
Amirzargar A, Lessanpezeshki M, Fathi A, et al. TH1/TH2 cytokine analysis in Iranian renal transplant recipients[J]. Transplant Proc, 2005, 37(7): 2985-2987.
34
Jia Y, Wei Y. Modulators of microRNA function in the immune system[J]. Int J Mol Sci, 2020, 21(7):2357.
35
Hassan NE, Moselhy WA, Eldomany EB, et al. Evaluation of miRNA-16-2-3P, miRNA-618 levels and their diagnostic and prognostic value in the regulation of immune response during SARS Cov-2 infection[J]. Immunogenetics, 2023, 75(4): 403-410.
36
Sawitzki B, Schlickeiser S, Reinke P, et al. Monitoring tolerance and rejection in organ transplant recipients[J]. Biomarkers, 2011, 16 Suppl 1: S42-S50.
37
Döcke WD, Höflich C, Davis KA, et al. Monitoring temporary immunodepression by flow cytometric measurement of monocytic HLA-DR expression: a multicenter standardized study[J]. Clin Chem, 2005, 51(12): 2341-2347.
38
van Gelder T, van Schaik RH, Hesselink DA. Pharmacogenetics and immunosuppressive drugs in solid organ transplantation[J]. Nat Rev Nephrol, 2014, 10(12): 725-731.
39
Sood S, Testro AG. Immune monitoring post liver transplant[J]. World J Transplant, 2014, 4(1): 30-39.
40
Liew CC, Dzau VJ. Molecular genetics and genomics of heart failure[J]. Nat Rev Genet, 2004, 5(11): 811-825.
41
Tsuang MT, Nossova N, Yager T, et al. Assessing the validity of blood-based gene expression profiles for the classification of schizophrenia and bipolar disorder: a preliminary report[J]. Am J Med Genet B Neuropsychiatr Genet, 2005, 133B(1): 1-5.
42
Marshall KW, Zhang H, Yager TD, et al. Blood-based biomarkers for detecting mild osteoarthritis in the human knee[J]. Osteoarthritis Cartilage, 2005, 13(10): 861-871.
43
Ma J, Liew CC. Gene profiling identifies secreted protein transcripts from peripheral blood cells in coronary artery disease[J]. J Mol Cell Cardiol, 2003, 35(8): 993-998.
44
Vanburen P, Ma J, Chao S, et al. Blood gene expression signatures associate with heart failure outcomes[J]. Physiol Genomics, 2011, 43(8): 392-397.
45
Burakoff R, Hande S, Ma J, et al. Differential regulation of peripheral leukocyte genes in patients with active Crohn′s disease and Crohn′s disease in remission[J]. J Clin Gastroenterol, 2010, 44(2): 120-126.
46
Marshall KW, Mohr S, Khettabi FE, et al. A blood-based biomarker panel for stratifying current risk for colorectal cancer[J]. Int J Cancer, 2010, 126(5): 1177-1186.
47
Cao S, Zhang Q, Song L, et al. Dysregulation of innate and adaptive immune responses in asymptomatic SARS-CoV-2 infection with delayed viral clearance[J]. Int J Biol Sci, 2022, 18(12): 4648-4657.
48
Liu D, Liu B, Lin C, et al. Imbalance of peripheral lymphocyte subsets in patients with ankylosing spondylitis: a meta-analysis[J]. Front Immunol, 2021, 12: 696973.
49
He YT, Zhou Y, Shao Q, et al. Immunoregulatory effects of subcutaneous immunotherapy on lymphocyte subgroups and cytokines in children with asthma[J]. J Immunol Res, 2019: 7024905.
50
寇建涛,贺强,李先亮,等. 自创免疫状态量化评分标准评估肝移植受者术后免疫状态的可行性分析[J]. 中华器官移植杂志2020, 41(6): 362-366.
51
Uemura T, Riley TR, Khan A, et al. Immune functional assay for immunosuppressive management in post-transplant malignancy[J]. Clin Transplant, 2011, 25(1): E32-E37.
52
Levitsky J. Next level of immunosuppression: drug/immune monitoring[J]. Liver Transpl, 2011, 17 Suppl 3: S60-S65.
53
Nankivell BJ, P′ng CH, O′connell PJ, et al. Calcineurin inhibitor nephrotoxicity through the lens of longitudinal histology: comparison of cyclosporine and tacrolimus eras[J]. Transplantation, 2016, 100(8): 1723-1731.
[1] 陈文艳, 汪云, 魏松之. 晚期三阴性乳腺癌的精准治疗[J]. 中华乳腺病杂志(电子版), 2024, 18(02): 78-84.
[2] 谢芬, 陈洁, 张媛媛, 刘茜, 胡芬, 李恭驰, 李炳辉, 金环. 移动健康管理模式在糖尿病足管理中的应用效果观察[J]. 中华损伤与修复杂志(电子版), 2024, 19(04): 335-340.
[3] 李飞, 郑灶松, 吴芃, 谭万龙. 广东省医学会泌尿外科疑难病例多学科会诊(第16期)——延胡索酸水合酶缺陷型晚期肾细胞癌[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 410-414.
[4] 李勇, 彭天明, 王倩倩, 陈育纯, 蒲小勇, 刘久敏. 基于失巢凋亡相关基因的膀胱癌预后模型构建及分析[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 331-339.
[5] 黄兴, 王蕾, 夏丹. 靶向免疫治疗时代下减瘤性肾切除术在转移性肾细胞癌治疗中的价值[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 208-213.
[6] 邓永豪, 曹嘉正. 长链非编码RNA与肾癌的关系及其在肾癌中的临床应用[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 289-293.
[7] 邓楠, 刘平. 广东省医学会泌尿外科疑难病例多学科会诊(第14期)——左肾盂恶性肿瘤并左肾巨大积液[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 296-299.
[8] 曹飞, 庞俊. 前列腺癌免疫微环境中免疫抑制性细胞分类及其作用机制[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 121-125.
[9] 陈旭, 牛凯, 孙建国. 放疗联合免疫治疗对驱动基因阴性NSCLC的困惑分析及应对策略[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 341-348.
[10] 张杰, 田广磊, 陈雄. 基于生物信息学分析探讨肝癌BRD4与预后关系及其ceRNA调控网络构建[J]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 568-576.
[11] 张燕, 许丁伟, 胡满琴, 李新成, 李翱, 黄洁. 胆囊癌免疫治疗的知识图谱可视化分析[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 319-327.
[12] 宋燕京, 乔江春, 宋京海. 中晚期肝癌TACE联合免疫靶向转化治疗后右半肝切除术一例[J]. 中华肝脏外科手术学电子杂志, 2024, 13(02): 227-230.
[13] 王龙, 武帅, 王炳智, 郑波, 李文斌, 邹霜梅. 结直肠印戒细胞癌的临床病理特征研究[J]. 中华结直肠疾病电子杂志, 2024, 13(03): 229-235.
[14] 林玲, 李京儒, 沈瑞华, 林惠, 乔晞. 基于生物信息学分析小鼠急性肾损伤和急性肺损伤的枢纽基因[J]. 中华肾病研究电子杂志, 2024, 13(03): 134-144.
[15] 吴迪, 闫志风, 李明霞, 孟元光. 晚期子宫内膜癌免疫治疗的探索[J]. 中华临床医师杂志(电子版), 2024, 18(03): 231-237.
阅读次数
全文


摘要