切换至 "中华医学电子期刊资源库"

中华移植杂志(电子版) ›› 2025, Vol. 19 ›› Issue (02) : 120 -127. doi: 10.3877/cma.j.issn.1674-3903.2025.02.010

综述

扩充胰岛移植供体池的机遇与挑战
钟瀚翔, 郭闻渊, 殷浩, 赵渊宇, 丁国善()   
  1. 200003 上海,海军军医大学第二附属医院器官移植科
  • 收稿日期:2024-10-12 出版日期:2025-04-25
  • 通信作者: 丁国善
  • 基金资助:
    国家自然科学基金面上项目(81971503)

Expanding the donor pool for islet transplantation: opportunities and challenges

Hanxiang Zhong, Wenyuan Guo, Hao Yin, Yuanyu Zhao, Guoshan Ding()   

  1. Organ Transplantation Department, The Second Affiliated Hospital of Navy Military Medical University, Shanghai 200003, China
  • Received:2024-10-12 Published:2025-04-25
  • Corresponding author: Guoshan Ding
引用本文:

钟瀚翔, 郭闻渊, 殷浩, 赵渊宇, 丁国善. 扩充胰岛移植供体池的机遇与挑战[J/OL]. 中华移植杂志(电子版), 2025, 19(02): 120-127.

Hanxiang Zhong, Wenyuan Guo, Hao Yin, Yuanyu Zhao, Guoshan Ding. Expanding the donor pool for islet transplantation: opportunities and challenges[J/OL]. Chinese Journal of Transplantation(Electronic Edition), 2025, 19(02): 120-127.

随着1型糖尿病患者治疗需求的增加,胰岛移植成为一种具有潜力的治愈性治疗手段,而供体池的扩充是其临床应用的关键挑战。本文基于国内外最新研究成果,系统探讨人类来源胰岛细胞、异种来源胰岛细胞、人工胰岛细胞和胰岛类器官在供体池扩展中的应用前景。心脏死亡器官捐献胰岛细胞、自体胰岛细胞及活体供体提供了多样化选择;基因编辑猪胰岛细胞在异种移植中展示了良好潜力;干细胞分化技术和直接重编程策略使人工胰岛细胞的生成成为可能;胰岛类器官通过3D生物打印与组织工程技术,进一步实现了类胰岛的结构和功能优化。然而,免疫排斥和移植物功能长期维持等问题仍是现有技术面临的主要障碍。通过优化供体细胞来源、改进免疫耐受策略以及结合基因编辑与再生医学技术,这些新兴方案的临床转化前景逐渐明朗化。未来研究需集中于技术优化与安全性评估,为扩大供体池和提升胰岛移植的临床疗效提供全新路径。

With the increasing treatment demands of patients with type 1 diabetes mellitus, pancreatic islet transplantation has emerged as a promising curative therapeutic approach. However, the expansion of donor pools remains a critical challenge for its clinical application. Based on the latest research findings both domestically and internationally, this study systematically explores the application prospects of human-derived islet cells, xenogeneic islet cells, artificial islet cells, and islet organoids in donor pool expansion. Research indicates that human-derived cardiac islet cells, autologous islet cells, and live donors offer diverse options; gene-edited pig islet cells exhibit significant potential in xenotransplantation; stem cell differentiation technologies and direct reprogramming strategies have made the generation of artificial islet cells feasible; and islet organoids, through 3D bioprinting and tissue engineering technologies, further optimize the structure and function of islet-like constructs. However, challenges such as immune rejection and the long-term maintenance of graft functionality remain major obstacles to current technologies. By optimizing donor cell sources, improving immunotolerance strategies, and integrating gene editing with regenerative medicine technologies, the clinical translation prospects of these emerging approaches are becoming increasingly clear. Future research should focus on technological optimization and safety evaluation to provide novel pathways for expanding donor pools and enhancing the clinical efficacy of islet transplantation.

1
Syed FZ. Type 1 diabetes mellitus[J]. Ann Intern Med, 2022175(3):ITC33-ITC48.
2
Wang Q, Huang YX, Liu L, et al. Pancreatic islet transplantation: current advances and challenges[J]. Front Immunol, 202415:1391504.
3
Langlois A, Pinget M, Kessler L, et al. Islet transplantation: current limitations and challenges for successful outcomes[J]. Cells, 202413(21):1783.
4
Ito T, Kenmochi T, Kurihara K, et al. The effects of using pancreases obtained from brain-dead donors for clinical islet transplantation in Japan[J]. J Clin Med, 20198(9):1430.
5
Doppenberg JB, Nijhoff MF, Engelse MA, et al. Clinical use of donation after circulatory death pancreas for islet transplantation[J]. Am J Transplant, 202121(9):3077-3087.
6
Zhao M, Muiesan P, Amiel SA, et al. Human islets derived from donors after cardiac death are fully biofunctional[J]. Am J Transplant, 20077(10):2318-2325.
7
Kaddis JS, Danobeitia JS, Niland JC, et al. Multicenter analysis of novel and established variables associated with successful human islet isolation outcomes[J]. Am J Transplant, 201010(3):646-656.
8
Markmann JF, Deng S, Desai NM, et al. The use of non-heart-beating donors for isolated pancreatic islet transplantation[J]. Transplantation, 200375(9):1423-1429.
9
Andres A, Kin T, O′Gorman D, et al. Clinical islet isolation and transplantation outcomes with deceased cardiac death donors are similar to neurological determination of death donors[J]. Transpl Int, 201629(1):34-40.
10
Hilling DE, Bouwman E, Terpstra OT, et al. Effects of donor-,pancreas-,and isolation-related variables on human islet isolation outcome: a systematic review[J]. Cell Transplant, 201423(8):921-928.
11
Saito T, Gotoh M, Satomi S, et al. Islet transplantation using donors after cardiac death: report of the Japan Islet Transplantation Registry[J]. Transplantation, 201090(7):740-747.
12
Anazawa T, Saito T, Goto M, et al. Long-term outcomes of clinical transplantation of pancreatic islets with uncontrolled donors after cardiac death: a multicenter experience in Japan[J]. Transplant Proc, 201446(6):1980-1984.
13
Berney T, Boffa C, Augustine T, et al. Utilization of organs from donors after circulatory death for vascularized pancreas and islet of Langerhans transplantation: recommendations from an expert group[J]. Transpl Int, 201629(7):798-806.
14
Phillips B, Asgari E, Berry M, et al. British Transplantation Society guidelines on abdominal organ transplantation from deceased donors after circulatory death[J]. Transplant Rev (Orlando), 202438(1):100801.
15
中国医师协会器官移植医师分会,中华医学会器官移植学分会,中华医学会外科学分会移植学组. 中国心脏死亡捐献器官评估与应用专家共识(2022版)[J/CD]. 中华移植杂志:电子版202216(6):321-328.
16
Sutherland DE, Goetz FC, Najarian JS. Report of twelve clinical cases of segmental pancreas transplantation at the University of Minnesota[J]. Transplant Proc, 198012(4 Suppl 2):33-39.
17
Sutherland DE, Goetz FC, Najarian JS. Living-related donor segmental pancreatectomy for transplantation[J]. Transplant Proc, 198012(4 Suppl 2):19-25.
18
Matsumoto S, Okitsu T, Iwanaga Y, et al. Insulin independence after living-donor distal pancreatectomy and islet allotransplantation[J]. Lancet, 2005365(9471):1642-1644.
19
Asano T, Kenmochi T. Preface to topic " Living donor pancreas transplantation" [J]. J Hepatobiliary Pancreat Sci, 201017(2):91.
20
Shapiro AM, Lakey JR, Ryan EA, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen[J]. N Engl J Med, 2000343(4):230-238.
21
Balamurugan AN, Naziruddin B, Lockridge A, et al. Islet product characteristics and factors related to successful human islet transplantation from the Collaborative Islet Transplant Registry (CITR) 1999-2010[J]. Am J Transplant, 201414(11):2595-2606.
22
Hering BJ, Clarke WR, Bridges ND, et al. Phase 3 trial of transplantation of human islets in type 1 diabetes complicated by severe hypoglycemia[J]. Diabetes Care, 201639(7):1230-1240.
23
Paget M, Murray H, Bailey CJ, et al. Human islet isolation: semi-automated and manual methods[J]. Diab Vasc Dis Res, 20074(1):7-12.
24
Israni AK, Skeans MA, Gustafson SK, et al. OPTN/SRTR 2012 Annual Data Report: pancreas[J]. Am J Transplant, 201414 Suppl 1:45-68.
25
Israni AK, Zaun D, Rosendale JD, et al. OPTN/SRTR 2012 Annual Data Report: deceased organ donation[J]. Am J Transplant, 201414 Suppl 1:167-183.
26
Al-Adra DP, Gill RS, Imes S, et al. Single-donor islet transplantation and long-term insulin independence in select patients with type 1 diabetes mellitus[J]. Transplantation, 201498(9):1007-1012.
27
Hering BJ, Kandaswamy R, Ansite JD, et al. Single-donor, marginal-dose islet transplantation in patients with type 1 diabetes[J]. JAMA, 2005293(7):830-835.
28
Bellin MD, Barton FB, Heitman A, et al. Potent induction immunotherapy promotes long-term insulin independence after islet transplantation in type 1 diabetes[J]. Am J Transplant, 201212(6):1576-1583.
29
Shapiro AM. Strategies toward single-donor islets of Langerhans transplantation[J]. Curr Opin Organ Transplant, 201116(6):627-631.
30
Jablońska B, Mrowiec S. Total pancreatectomy with autologous islet cell transplantation-the current indications[J]. J Clin Med, 202110(12):2723.
31
Wilson GC, Sutton JM, Smith MT, et al. Total pancreatectomy with islet cell autotransplantation as the initial treatment for minimal-change chronic pancreatitis[J]. HPB (Oxford), 201517(3):232-238.
32
Chinnakotla S, Bellin MD, Schwarzenberg SJ, et al. Total pancreatectomy and islet autotransplantation in children for chronic pancreatitis: indication, surgical techniques, postoperative management, and long-term outcomes[J]. Ann Surg, 2014260(1):56-64.
33
Sutherland DE, Radosevich DM, Bellin MD, et al. Total pancreatectomy and islet autotransplantation for chronic pancreatitis[J]. J Am Coll Surg, 2012214(4):409-424.
34
Geyer MC, Coates PT, Khurana S, et al. First Report of Successful Total Pancreatectomy and Islet Autotransplant in Australia[J]. Pancreas, 201746(3):e18-e20.
35
Savari O, Golab K, Wang LJ, et al. Preservation of beta cell function after pancreatic islet autotransplantation: University of Chicago experience[J]. Am Surg, 201581(4):421-427.
36
Hu Q, Liu Z, Zhu H. Pig islets for islet xenotransplantation: current status and future perspectives[J]. Chin Med J (Engl), 2014127(2):370-377.
37
Matsumoto S, Shimoda M. Current situation of clinical islet transplantation from allogeneic toward xenogeneic[J]. J Diabetes, 202012(10):733-741.
38
Hong SH, Kim HJ, Kang SJ, et al. Novel immunomodulatory approaches for porcine islet xenotransplantation[J]. Curr Diab Rep, 202121(1):3.
39
Grimus S, Sarangova V, Welzel PB, et al. Immunoprotection strategies in beta-cell replacement therapy: a closer look at porcine islet xenotransplantation[J]. Adv Sci (Weinh), 202411(31):e2401385.
40
Ekser B, Cooper DKC, Tector AJ. The need for xenotransplantation as a source of organs and cells for clinical transplantation[J]. Int J Surg, 201523(Pt B):199-204.
41
Cheng M. Islet xeno/transplantation and the risk of contagion: local responses from Canada and Australia to an emerging global technoscience[J]. Life Sci Soc Policy, 201511:12.
42
Zhu HT, Yu L, Lyu Y, et al. Optimal pig donor selection in islet xenotransplantation: current status and future perspectives[J]. J Zhejiang Univ Sci B, 201415(8):681-691.
43
Sakata N, Yoshimatsu G, Kawakami R, et al. The porcine islet-derived organoid showed the characteristics as pancreatic duct[J]. Sci Rep, 202414(1):6401.
44
Nagaraju S, Bottino R, Wijkstrom M, et al. Islet xenotransplantation: what is the optimal age of the islet-source pig?[J]. Xenotransplantation, 201522(1):7-19.
45
Zhu H, Yu L, He Y, et al. Microencapsulated pig islet xenotransplantation as an alternative treatment of diabetes[J]. Tissue Eng Part B Rev, 201521(5):474-489.
46
Dufrane D, Goebbels RM, Fdilat I, et al. Impact of porcine islet size on cellular structure and engraftment after transplantation: adult versus young pigs[J]. Pancreas, 200530(2):138-147.
47
Rajotte RV. Isolation and assessment of islet quality[J]. Xenotransplantation, 200815(2):93-95.
48
Juang JH, Hsu BR, Kuo CH, et al. Characteristics and transplantation of the porcine neonatal pancreatic cell clusters isolated from 1- to 3-day-old versus 1-month-old pigs[J]. Transplant Proc, 200436(4):1203-1205.
49
Luca G, Nastruzzi C, Calvitti M, et al. Accelerated functional maturation of isolated neonatal porcine cell clusters: in vitro and in vivo results in NOD mice[J]. Cell Transplant, 200514(5):249-261.
50
Reardon S. New life for pig-to-human transplants[J]. Nature, 2015527(7577):152-154.
51
Ma X, Ye B, Gao F, et al. Tissue factor knockdown in porcine islets: an effective approach to suppressing the instant blood-mediated inflammatory reaction[J]. Cell Transplant, 201221(1):61-71.
52
Hawthorne WJ, Salvaris EJ, Phillips P, et al. Control of IBMIR in neonatal porcine islet xenotransplantation in baboons[J]. Am J Transplant, 201414(6):1300-1309.
53
Cowan PJ. The use of CRISPR/Cas associated technologies for cell transplant applications[J]. Curr Opin Organ Transplant, 201621(5):461-466.
54
Otonkoski T. New tools for experimental diabetes research: cellular reprogramming and genome editing[J]. Ups J Med Sci, 2016121(2):146-150.
55
Czarnecka Z, Dadheech N, Razavy H, et al. The current status of allogenic islet cell transplantation[J]. Cells, 202312(20):2423.
56
D′Amour KA, Bang AG, Eliazer S, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells[J]. Nat Biotechnol, 200624(11):1392-1401.
57
Kroon E, Martinson LA, Kadoya K, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo[J]. Nat Biotechnol, 200826(4):443-452.
58
Assady S, Maor G, Amit M, et al. Insulin production by human embryonic stem cells[J]. Diabetes, 200150(8):1691-1697.
59
D′Amour KA, Agulnick AD, Eliazer S, et al. Efficient differentiation of human embryonic stem cells to definitive endoderm[J]. Nat Biotechnol, 200523(12):1534-1541.
60
Wu J, Li T, Guo M, et al. Treating a type 2 diabetic patient with impaired pancreatic islet function by personalized endoderm stem cell-derived islet tissue[J]. Cell Discov, 202410(1):45.
61
Ramzy A, Thompson DM, Ward-Hartstonge KA, et al. Implanted pluripotent stem-cell-derived pancreatic endoderm cells secrete glucose-responsive C-peptide in patients with type 1 diabetes[J]. Cell Stem Cell, 202128(12):2047-2061.
62
Yang G, Fan X, Liu Y, et al. Immunomodulatory mechanisms and therapeutic potential of mesenchymal Stem Cells[J]. Stem Cell Rev Rep, 202319(5):1214-1231.
63
Canning P, Alwan A, Khalil F, et al. Perspectives and challenges on the potential use of exosomes in bioartificial pancreas engineering[J]. Ann Biomed Eng, 202250(10):1177-1186.
64
Song N, Scholtemeijer M, Shah K. Mesenchymal stem cell immunomodulation: mechanisms and therapeutic potential[J]. Trends Pharmacol Sci, 202041(9):653-664.
65
Zhou Q, Brown J, Kanarek A, et al. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells[J]. Nature, 2008455(7213):627-632.
66
Banga A, Akinci E, Greder LV, et al. In vivo reprogramming of Sox9+ cells in the liver to insulin-secreting ducts[J]. Proc Natl Acad Sci U S A, 2012109(38):15336-15341.
67
Hill CM, Banga A, Abrahante JE, et al. Establishing a large-animal model for in vivo reprogramming of bile duct cells into insulin-secreting cells to treat diabetes[J]. Hum Gene Ther Clin Dev, 201728(2):87-95.
68
Klein D, Alvarez-Cubela S, Lanzoni G, et al. BMP-7 induces adult human pancreatic exocrine-to-endocrine conversion[J]. Diabetes, 201564(12):4123-4134.
69
Wassmer CH, Lebreton F, Bellofatto K, et al. Bio-engineering of pre-vascularized islet organoids for the treatment of type 1 diabetes[J]. Transpl Int, 202135:10214.
70
Lebreton F, Hanna R, Wassmer CH, et al. Mechanisms of immunomodulation and cytoprotection conferred to pancreatic islet by human amniotic epithelial cells[J]. Stem Cell Rev Rep, 202218(1):346-359.
71
Lebreton F, Lavallard V, Bellofatto K, et al. Insulin-producing organoids engineered from islet and amniotic epithelial cells to treat diabetes[J]. Nat Commun, 201910(1):4491.
72
Mishra R, Roux BM, Posukonis M, et al. Effect of prevascularization on in vivo vascularization of poly(propylene fumarate)/fibrin scaffolds[J]. Biomaterials, 201677:255-266.
73
Später T, Frueh FS, Menger MD, et al. Potentials and limitations of Integra(R) flowable wound matrix seeded with adipose tissue-derived microvascular fragments[J]. Eur Cell Mater, 201733:268-278.
74
He F, Tao T, Liu H, et al. Controllable fabrication of composite core-shell capsules at a macroscale as organoid biocarriers[J]. ACS Appl Bio Mater, 20214(2):1584-1596.
75
Ludwig B, Reichel A, Steffen A, et al. Transplantation of human islets without immunosuppression[J]. Proc Natl Acad Sci U S A, 2013110(47):19054-19058.
76
Stabler CL, Li Y, Stewart JM, et al. Engineering immunomodulatory biomaterials for type 1 diabetes[J]. Nat Rev Mater, 20194(6):429-450.
77
Yan H, Melin M, Jiang K, et al. Immune-modulating mucin hydrogel microdroplets for the encapsulation of cell and microtissue[J]. Adv Funct Mater, 202131(42): 2105967.
78
Gattás-Asfura KM, Abuid NJ, Labrada I, et al. Promoting dendrimer self-assembly enhances covalent Layer-by-Layer encapsulation of pancreatic islets[J]. ACS Biomater Sci Eng, 20206(5):2641-2651.
79
Gibly RF, Graham JG, Luo X, et al. Advancing islet transplantation: from engraftment to the immune response[J]. Diabetologia, 201154(10):2494-2505.
80
Angaswamy N, Tiriveedhi V, Sarma NJ, et al. Interplay between immune responses to HLA and non-HLA self-antigens in allograft rejection[J]. Hum Immunol, 201374(11):1478-1485.
81
Han Y, Liu D, Li L. PD-1/PD-L1 pathway: current researches in cancer[J]. Am J Cancer Res, 202010(3):727-742.
82
Yoshihara E, O′Connor C, Gasser E, et al. Immune-evasive human islet-like organoids ameliorate diabetes[J]. Nature, 2020586(7830):606-611.
83
Gerace D, Zhou Q, Kenty JH, et al. Engineering human stem cell-derived islets to evade immune rejection and promote localized immune tolerance[J]. Cell Rep Med, 20234(1):100879.
84
Bennet W, Groth CG, Larsson R, et al. Isolated human islets trigger an instant blood mediated inflammatory reaction: implications for intraportal islet transplantation as a treatment for patients with type 1 diabetes[J]. Ups J Med Sci, 2000105(2):125-133.
85
Bealer E, Crumley K, Clough D, et al. Extrahepatic transplantation of 3D cultured stem cell-derived islet organoids on microporous scaffolds[J]. Biomater Sci, 202311(10):3645-3655.
86
Tillmar L, Welsh N. In vitro cultured rat islets express genes that both prevent and promote angiogenesis[J]. JOP, 20045(2):81-91.
87
Chae HY, Lee BW, Oh SH, et al. Effective glycemic control achieved by transplanting non-viral cationic liposome-mediated VEGF-transfected islets in streptozotocin-induced diabetic mice[J]. Exp Mol Med, 200537(6):513-523.
88
Hughes A, Mohanasundaram D, Kireta S, et al. Insulin-Like growth factor-II (IGF-II) prevents proinflammatory cytokine-induced apoptosis and significantly improves islet survival after transplantation[J]. Transplantation, 201395(5):671-678.
89
Hughes A, Rojas-Canales D, Drogemuller C, et al. IGF2: an endocrine hormone to improve islet transplant survival[J]. J Endocrinol, 2014221(2):R41-R48.
90
Kim J, Shim IK, Hwang DG, et al. 3D cell printing of islet-laden pancreatic tissue-derived extracellular matrix bioink constructs for enhancing pancreatic functions[J]. J Mater Chem B, 20197(10):1773-1781.
[1] 房昊宇, 王筱, 张安伟, 尚丹丹, 俞炯, 曹红翠. 基于粪便代谢组学分析间充质干细胞治疗克罗恩病小鼠的有效性生物标志物[J/OL]. 中华危重症医学杂志(电子版), 2025, 18(02): 98-104.
[2] 张晓波, 巴特, 黄瑞娟, 王宏宇. 间充质干细胞外泌体改善急性肺损伤机制的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(01): 81-85.
[3] 曾繁润, 林永勇, 王君. 间充质干细胞外泌体促进创面血管新生机制的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2025, 20(01): 86-89.
[4] 向东, 王晓华, 徐培航, 巨春蓉. 供体来源游离DNA在肺移植术后并发症诊断中的应用[J/OL]. 中华移植杂志(电子版), 2025, 19(01): 37-42.
[5] 李雪铭, 伊诺, 卢智豪, 冯婧, 董健藤, 李健. 人脐带间充质干细胞来源外泌体抑制肝星状细胞活化发挥抗肝纤维化作用的实验研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(03): 148-156.
[6] 童生莲, 张茜. 异基因造血干细胞移植后感染新冠病毒发生可逆性后部脑病变综合征1 例并文献复习[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(03): 190-192.
[7] 张剑豪, 蔡丹文, 蒋辰浩, 张宇君, 韩路, 赵雪刚, 吕行, 萧家麒, 张杰滨, 隋昕, 张英才. 过表达POSTN 的间充质干细胞来源外泌体增强肝脏再生能力[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(02): 65-74.
[8] 廖丽斐, 廖鹏程, 石飒飒, 马瑞朝, 屈新军. 负载牙周膜干细胞的HA-TCP 支架复合体对牙周组织再生的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(02): 93-99.
[9] 刘洋, 吴涛, 毛东锋, 高铭敏, 吴秋月, 梁丽霞. 异基因造血干细胞移植治疗伴复杂染色体核型的粒细胞肉瘤1例并文献复习[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(02): 109-111.
[10] 梁瑶瑶, 邬绿莹, 陈津. 负载干细胞外泌体水凝胶治疗糖尿病足溃疡的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(02): 112-119.
[11] 黄瑛, 侯田田, 金紫怡, 耿兴超. 干细胞治疗国内外监管现状概述及对我国监管体系完善的启示[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(02): 120-126.
[12] 于倩, 崔庆超, 范一卉, 姚瑶. 施旺细胞衍生的细胞外囊泡通过Wnt/β-catenin信号通路促进牙髓再生的机制研究[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(01): 1-11.
[13] 刘阳, 郑宏, 孙碧红, 苑倩, 杨培, 郭海英, 李玉红. 基于CiteSpace 对毛囊干细胞在脱发领域相关文献的可视化分析[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(01): 30-40.
[14] 李欣桐, 郑焱华, 任芮林, 许敏, 何春晓, 温雪梅, 李乃农, 李晓帆. 硫酸多黏菌素B 治疗造血干细胞移植术后重症感染的临床分析[J/OL]. 中华细胞与干细胞杂志(电子版), 2025, 15(01): 51-56.
[15] 张可颖, 冀雨薇, 付章宁, 张益帆, 王晓晨, 杨滟, 陈香美, 蔡广研, 洪权. 人参皂苷Rb1 预处理间充质干细胞的转录组分析及急性肾损伤治疗关键基因挖掘[J/OL]. 中华肾病研究电子杂志, 2025, 14(01): 26-33.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?