切换至 "中华医学电子期刊资源库"

中华移植杂志(电子版) ›› 2019, Vol. 13 ›› Issue (03) : 255 -258. doi: 10.3877/cma.j.issn.1674-3903.2019.03.021

所属专题: 文献

综述

胚胎胰腺原基同种和异种移植
徐剑1, 李仲洋1, 孙亚辉1, 黄业宁1, 郑树森2,()   
  1. 1. 570311 海口,海南医学院第二附属医院肝胆肝移植外科
    2. 310003 杭州,浙江大学医学院附属第一医院肝胆胰外科;310015 杭州,浙江树人大学树兰国际医学院
  • 收稿日期:2019-07-16 出版日期:2019-08-25
  • 通信作者: 郑树森
  • 基金资助:
    海南省科技厅重点项目(ZDYF201716)

Allo- and xeno-transplantation of embryonic pancreatic primordia

Jian Xu1, Zhongyang Li1, Yahui Sun1, Yening Huang1, Shusen Zheng2,()   

  1. 1. Department of Hepatobiliary and Transplantation Surgery, the 2nd Affliated Hospital of Hainan Medical University, Haikou 570311, China
    2. Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China;Shulan International Medical College of Zhejiang Shuren University, Hangzhou 310015, China
  • Received:2019-07-16 Published:2019-08-25
  • Corresponding author: Shusen Zheng
  • About author:
    Corresponding author: Zheng Shusen, Email:
引用本文:

徐剑, 李仲洋, 孙亚辉, 黄业宁, 郑树森. 胚胎胰腺原基同种和异种移植[J]. 中华移植杂志(电子版), 2019, 13(03): 255-258.

Jian Xu, Zhongyang Li, Yahui Sun, Yening Huang, Shusen Zheng. Allo- and xeno-transplantation of embryonic pancreatic primordia[J]. Chinese Journal of Transplantation(Electronic Edition), 2019, 13(03): 255-258.

胰腺、胰岛和胚胎干细胞移植等用于治疗糖尿病各有优缺点。胰腺原基移植是目前的一种新尝试。由于胰腺原基拥有分化潜能高的β细胞团前体细胞,具有产生大量胰岛素的潜力,且具有低免疫原性、未血管化等特点,移植后能使免疫功能正常的动物血糖水平得到长时间控制。特别是利用猪胰腺原基植入灵长类动物肠系膜,可在不使用免疫抑制剂的情况下跨越异种移植屏障,甚至产生免疫耐受,为人类糖尿病的治疗提供了一种新思路。

Pancreas, islets and embryonic stem cell transplantation have been clinically or experimentally explored for the treatment of diabetes, which have their own advantages and disadvantages. Pancreatic primordia transplantation is a new attempt. Since the pancreatic primordium contains precursor cell clusters of β cells which has high differentiation potential. These β cells have the potential to produce a large amount of insulin. What′s more, pancreatic primordia still has the advantages of avascularity and low immunogenicity. Pancreatic primordia transplantation can control the blood glucose level of immunocompetent animals for a long time. Pig pancreatic primordia xenotransplantation in mesentery of primates can get over the species barrier without using any immunosuppressive agents and induce immune tolerance, which provides a new idea for the treatment of human diabetes.

14
Räihä J, Helanterä I, Ekstrand A, et al. Effect of pretransplant dialysis modality on outcomes after simultaneous pancreas-kidney transplantation[J]. Ann Transplant, 2019, 24: 426-431.
15
Jiang FX, Morahan G. Pancreatic stem cells remain unresolved[J]. Stem Cells Dev, 2014, 23(23): 2803-2812.
16
Anazawa T, Okajima H, Masui T, et al. Current state and future evolution of pancreatic islet transplantation[J]. Ann Gastroenterol Surg, 2018, 3(1): 34-42.
17
Groth CG, Korsgren O, Tibell A, et al. Transplantation of porcine fetal pancreas to diabetic patients[J]. The Lancet, 1994, 344(8934): 1402-1404.
18
Castaing M, Peault B, Basmaciogullari A, et al. Blood glucose normalization upon transplantation of human embryonic pancreas into bata-cell deficient SCID mice[J]. Diabetologia, 2001, 44(11): 2066-2067.
19
Gittes GK, Galante PE, Hanrahan D, et al. Lineage-specific morphogenesis in the developing pancreas: role of mesenchymal factors[J]. Development, 1996, 122(2): 439-447.
20
Brown J, Danilovs JA, Clark WR, et al. Fetal pancreas as a donor organ[J]. World J Surg, 1984, 8(2): 152-157.
21
Brown J, Mullen YS, Clark WR, et al. Importance of hepatic portal circulation for insulin action in streptozotocin-diabetic rats transplanted with fetal pancreases[J]. J Clin Invest, 1979, 64(6): 1688-1694.
22
Brown J, Heininger D, Kuret J, et al. Islet cells grow after transplantation of fetal pancreas and control of diabetes[J]. Diabetes, 1981, 30(1): 9-13.
23
Brown J, Clark WR, Molnar IG, et al. Fetal pancreas transplantation for reversal of streptozotocin diabetes in rats[J]. Diabetes, 1976, 25(1): 56-64.
24
Hegre OD, Leonard RJ, Schmitt RV, et al. Isotransplantation of organ-culture neonatal pancreas: reversal of alloxan diabetes in the rat[J]. Diabetes, 1976, 25(3): 180-189.
25
Leonard RL, Lazarow A, Hegre OH. Pancreatic islet transplantation in the rat[J]. Diabetes, 1973, 22(6): 413-428.
26
Du Toit D, Muller C, Page B, et al. Foetal rat pancreatic transplantation: post-transplantation development of foetal pancreatic iso- and allografts and suppression of rejection with mycophenolate mofetil (MMF) and cyclosporine-based immunesuppression[J]. Microsc Res Techniq, 1998, 43(4): 347-355.
27
Adams GA, Squires EC, Maestri M, et al. Regimens of IGF-1 treatment in fetal pancreas transplantation[J]. J Surg Res, 1997, 68(1): 73-78.
28
Wang L, Huang YB, Chen G, et al. Organogenesis of pancreatic anlagen allografted in rats[J]. Transplant Proc, 2006, 38(10): 3280-3282.
29
Hammerman MR. Organogenesis of endocrine pancreas from transplanted embryonic anlagen[J]. Transplant Immunology, 2004, 12: 249-258.
30
Rogers SA, Liapis H, Hammerman MR. Intraperitoneal transplantation of pancreatic anlagen[J]. ASAIO J, 2003, 49(5): 527-532.
31
Hammerman MR. Underpinnings of cellular organ replacement therapies[J]. Curr Opin Organ Transplant, 2014, 19(2): 131-132.
32
Soria B, Andrau E, Berna G, et al. Engineering pancreatic islets[J]. Pflugers Arch-Eur J Physiol, 2000, 440(1): 1-18.
33
Mullen Y, Shintaku IP. Fetal pancreas allografts for reversal of diabetes in rats. Ⅰ. Allograft survival in nonimmunosuppressed recipients[J]. Transplantation, 1980, 29(1): 35-42.
34
Wennberg L, Song Z, Bennet W, et al. Diabetic rats transplanted with adult porcine islets and immunosuppressed with cyclosporine A, mycophenolate mofetil and leflunomide remain normoglycemic for up to 100 days[J]. Transplantation, 2001, 719(9): 1024-1033.
35
Korsgren O, Jansson L. Discordant cellular xenografts revascularized in intermediate athymic hosts fail to induce a hyperacute rejection when transplanted into immunocompetent rats[J]. Transplantation, 1994, 57(9): 1408-1411.
36
Rogers SA, Chen F, Talcott M, et al. Islet cell engraftment and control of diabetes in rats after transplantation of pig pancreatic anlagen[J]. Am J Physiol Endocrinol Metab, 2004, 286(4): E502-E509.
37
Rogers SA, Liapis H, Hammerman MR. Normalization of glucose post-transplantation of pig pancreatic anlagen into non-immunosuppressed diabetic rats depends on obtaining anlagen prior to embryonic day 35[J]. Transpl Immunol, 2005, 14(2): 67-75.
38
Rogers SA, Chen F, Talcott M, et al. Glucose tolerance normalization following transplantation of pig pancreatic primordia into non-immunosuppressed diabetic ZDF rats[J]. Transpl Immunol, 2006, 16(3-4): 176-184.
Rogers SA, Chen F, Talcott MR, et al. Long-term engraftment following transplantation of pig pancreatic primordia into non-immunosuppressed diabetic rhesus macaques[J]. Xenotransplantation, 2007, 14(6): 591-602.
39
Hammerman MR. Organogenesis of kidney and endocrine pancreas: the window opens[J]. Organogenesis, 2007, 3(2): 59-66.
40
Rogers SA, Hammerman MR. Normalization of glucose post-transplantation into diabetic rats of pig pancreatic primordia preserved in vitro[J]. Organogenesis, 2008, 4(1): 48-51.
41
Rogers SA, Mohanakumar T, Liapis H, et al. Engraftment of cells from porcine islets of Langerhans and normalization of glucose tolerance following transplantation of pig pancreatic primordia in nonimmune-suppressed diabetic rats[J]. Am J Pathol, 2010, 177(2): 854-864.
42
Rogers SA, Tripathi P, Mohanakumar T, et al. Engraftment of cells from porcine islets of Langerhans following transplantation of pig pancreatic primordia in non-immunosuppressed diabetic rhesus macaques[J]. Organogenesis, 2011, 7(3): 154-162.
1
Hu R, Liu Y, Su M, et al. Transplantation of donor-origin mouse embryonic stem cell-derived thymic epithelial progenitors prevents the development of chronic graft-versus-host disease in mice[J]. Stem Cells Transl Med, 2017,6(1): 121-130.
2
Kim MJ, Lee Y, Jon S, et al. PEGylated bilirubin nanoparticle as ananti-oxidative and anti-inflammatory demulcent in pancreatic islet xenotransplantation[J]. Biomaterials, 2017,133: 242-252.
3
Hani H, Allaudin ZN, Mohd-Lila MA, et al. Caprine pancreaticislet xenotransplantation into diabetic immunosuppressed BALB/c mice[J]. Xenotransplantation, 2014, 21(2): 174-182.
4
Perez-Basterrechea M, Obaya AJ, Meana A, et al. Cooperation by fibroblasts and bone marrow-mesenchymal stem cells to improve pancreatic rat-to-mouse islet xenotransplantation[J]. PLoS One, 2013, 8(8): e73526.
5
Hammerman MR. Xenotransplantation of pancreatic and kidney primordia-where do we stand?[J]. Transpl Immunol, 2009, 21(2): 93-100.
6
Hammerman MR. Development of a novel xenotransplantation strategy for treatment of diabetes mellitus in rat hosts and translation to non-human primates[J]. Organogenesis, 2012, 8(2): 41-48.
7
Hammerman MR. Classic and current opinion in embryonic organ transplantation[J]. Curr Opin Organ Transplant, 2014, 19(2): 133-139.
8
Foglia RP, LaQuaglia M, Statter MB, et al. Fetal allograft survival in immunocompetent recipients is age dependent and organ specific[J]. Ann Surg, 1986, 204(7): 402-410.
9
Dekel B, Burakova T, Ben-Hur H, et al. Engraftment of human kidney tissue in rat radiation chimera: Ⅱ human fetal kidneys display reduced immunogenicity to adoptively trandferred human peripheral blood mononuclear cells and exhibit rapid growth and development[J]. Transplantation, 1997, 64(11): 1550-1558.
10
Statter M, Fahrner KJ, Barksdale EM, et al. Correlation of fetal kidney and testis congenic graft survival with reduced major histocompatibility complex burden[J]. Transplantation, 1989, 47(4): 651-660.
11
Dekel B, Marcus H, Herzel BH, et al. In vivo modulation of the allogeneic immune response by human fetal kidneys: the role of cytokines, chemokines, and cytolytic effector molecules[J]. Transplantation, 2000, 69(7): 1470-1478.
12
Hammerman MR. Engraftment of insulin-producing cells from porcine islets in non-immune-suppressed rats or nonhuman primates transplanted previously with embryonic pig pancreas[J]. J Transplant, 2011: 261352.
13
Thivolet C. New therapeutic approaches to type 1 diabetes: from prevention to cellular or gene therapies[J]. Clin Endocrinol, 2001, 55(5): 565-574.
[1] 何金梅, 尹立雪, 谭静, 张文军, 王锐, 任梅, 廖明娇. 超声心肌做功技术对2型糖尿病患者潜在左心室心肌收缩功能损伤的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1029-1035.
[2] 王珏, 陈赛君, 贲志飞, 詹锦勇, 徐开颖. 剪切波弹性成像联合极速脉搏波技术评估颈动脉弹性对糖尿病性视网膜病变的预测价值[J]. 中华医学超声杂志(电子版), 2023, 20(06): 636-641.
[3] 王洁, 丁泊文, 尹健. 糖尿病性乳腺病52例临床分析[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 285-289.
[4] 陈絮, 詹玉茹, 王纯华. 孕妇ABO血型联合甲状腺功能检测对预测妊娠期糖尿病的临床价值[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 604-610.
[5] 张健, 刘小龙, 查天建, 姚俊杰, 王傑. 富含血小板血浆联合异种脱细胞真皮基质修复糖尿病足缺血性创面的临床效果[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 503-506.
[6] 赵雅玫, 谢斌, 陈艳, 吴健. 抗生素骨水泥联合负压封闭引流对糖尿病足溃疡临床疗效的荟萃分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 427-433.
[7] 贾蔓箐, 卞婧, 周业平. 对小剂量胰岛素局部注射促进脂肪干细胞移植成活及改善糖尿病创面愈合临床观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 312-316.
[8] 李琛, 张惟佳, 潘亚萍. 牙周炎与系统性疾病之间关系的应用思考:2022年EFP和WONCA欧洲分部联合研讨会共识报告的解读及启示[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 322-327.
[9] 叶弘, 吕婧喆, 钟良军. 白藜芦醇治疗牙周炎和糖尿病的新进展[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 376-380.
[10] 叶啟发, 兰佳男. 中国人体器官捐献与异种移植[J]. 中华移植杂志(电子版), 2023, 17(04): 221-226.
[11] 李京珂, 张妍春, 武佳懿, 任秀瑜. 深度学习在糖尿病视网膜病变筛查、评级及管理中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(04): 241-246.
[12] 黄岩, 刘晓巍, 杨春玲, 兰烨. 急性胰腺炎合并糖尿病患者的临床特征及血糖代谢与病情严重度的相关性[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 439-442.
[13] 张政赢, 鞠阳, 刘晓宁. 二甲双胍对2型糖尿病患者大肠腺瘤术后复发的影响[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 485-488.
[14] 薛念余, 张盛敏, 吴凌恒, 沙蕾, 童揽月, 沈崔琴, 李朝军, 杜联芳. 研究血清胆红素对2型糖尿病患者心脏结构发生改变前心肌功能的影响[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1004-1009.
[15] 谢国晓, 赵凌霞, 薛雪花. 慢性病管理模式在糖尿病社区管理中的应用[J]. 中华临床医师杂志(电子版), 2023, 17(05): 587-590.
阅读次数
全文


摘要