切换至 "中华医学电子期刊资源库"

中华移植杂志(电子版) ›› 2019, Vol. 13 ›› Issue (03) : 255 -258. doi: 10.3877/cma.j.issn.1674-3903.2019.03.021

所属专题: 文献

综述

胚胎胰腺原基同种和异种移植
徐剑1, 李仲洋1, 孙亚辉1, 黄业宁1, 郑树森2,()   
  1. 1. 570311 海口,海南医学院第二附属医院肝胆肝移植外科
    2. 310003 杭州,浙江大学医学院附属第一医院肝胆胰外科;310015 杭州,浙江树人大学树兰国际医学院
  • 收稿日期:2019-07-16 出版日期:2019-08-25
  • 通信作者: 郑树森
  • 基金资助:
    海南省科技厅重点项目(ZDYF201716)

Allo- and xeno-transplantation of embryonic pancreatic primordia

Jian Xu1, Zhongyang Li1, Yahui Sun1, Yening Huang1, Shusen Zheng2,()   

  1. 1. Department of Hepatobiliary and Transplantation Surgery, the 2nd Affliated Hospital of Hainan Medical University, Haikou 570311, China
    2. Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China;Shulan International Medical College of Zhejiang Shuren University, Hangzhou 310015, China
  • Received:2019-07-16 Published:2019-08-25
  • Corresponding author: Shusen Zheng
  • About author:
    Corresponding author: Zheng Shusen, Email:
引用本文:

徐剑, 李仲洋, 孙亚辉, 黄业宁, 郑树森. 胚胎胰腺原基同种和异种移植[J/OL]. 中华移植杂志(电子版), 2019, 13(03): 255-258.

Jian Xu, Zhongyang Li, Yahui Sun, Yening Huang, Shusen Zheng. Allo- and xeno-transplantation of embryonic pancreatic primordia[J/OL]. Chinese Journal of Transplantation(Electronic Edition), 2019, 13(03): 255-258.

胰腺、胰岛和胚胎干细胞移植等用于治疗糖尿病各有优缺点。胰腺原基移植是目前的一种新尝试。由于胰腺原基拥有分化潜能高的β细胞团前体细胞,具有产生大量胰岛素的潜力,且具有低免疫原性、未血管化等特点,移植后能使免疫功能正常的动物血糖水平得到长时间控制。特别是利用猪胰腺原基植入灵长类动物肠系膜,可在不使用免疫抑制剂的情况下跨越异种移植屏障,甚至产生免疫耐受,为人类糖尿病的治疗提供了一种新思路。

Pancreas, islets and embryonic stem cell transplantation have been clinically or experimentally explored for the treatment of diabetes, which have their own advantages and disadvantages. Pancreatic primordia transplantation is a new attempt. Since the pancreatic primordium contains precursor cell clusters of β cells which has high differentiation potential. These β cells have the potential to produce a large amount of insulin. What′s more, pancreatic primordia still has the advantages of avascularity and low immunogenicity. Pancreatic primordia transplantation can control the blood glucose level of immunocompetent animals for a long time. Pig pancreatic primordia xenotransplantation in mesentery of primates can get over the species barrier without using any immunosuppressive agents and induce immune tolerance, which provides a new idea for the treatment of human diabetes.

14
Räihä J, Helanterä I, Ekstrand A, et al. Effect of pretransplant dialysis modality on outcomes after simultaneous pancreas-kidney transplantation[J]. Ann Transplant, 2019, 24: 426-431.
15
Jiang FX, Morahan G. Pancreatic stem cells remain unresolved[J]. Stem Cells Dev, 2014, 23(23): 2803-2812.
16
Anazawa T, Okajima H, Masui T, et al. Current state and future evolution of pancreatic islet transplantation[J]. Ann Gastroenterol Surg, 2018, 3(1): 34-42.
17
Groth CG, Korsgren O, Tibell A, et al. Transplantation of porcine fetal pancreas to diabetic patients[J]. The Lancet, 1994, 344(8934): 1402-1404.
18
Castaing M, Peault B, Basmaciogullari A, et al. Blood glucose normalization upon transplantation of human embryonic pancreas into bata-cell deficient SCID mice[J]. Diabetologia, 2001, 44(11): 2066-2067.
19
Gittes GK, Galante PE, Hanrahan D, et al. Lineage-specific morphogenesis in the developing pancreas: role of mesenchymal factors[J]. Development, 1996, 122(2): 439-447.
20
Brown J, Danilovs JA, Clark WR, et al. Fetal pancreas as a donor organ[J]. World J Surg, 1984, 8(2): 152-157.
21
Brown J, Mullen YS, Clark WR, et al. Importance of hepatic portal circulation for insulin action in streptozotocin-diabetic rats transplanted with fetal pancreases[J]. J Clin Invest, 1979, 64(6): 1688-1694.
22
Brown J, Heininger D, Kuret J, et al. Islet cells grow after transplantation of fetal pancreas and control of diabetes[J]. Diabetes, 1981, 30(1): 9-13.
23
Brown J, Clark WR, Molnar IG, et al. Fetal pancreas transplantation for reversal of streptozotocin diabetes in rats[J]. Diabetes, 1976, 25(1): 56-64.
24
Hegre OD, Leonard RJ, Schmitt RV, et al. Isotransplantation of organ-culture neonatal pancreas: reversal of alloxan diabetes in the rat[J]. Diabetes, 1976, 25(3): 180-189.
25
Leonard RL, Lazarow A, Hegre OH. Pancreatic islet transplantation in the rat[J]. Diabetes, 1973, 22(6): 413-428.
26
Du Toit D, Muller C, Page B, et al. Foetal rat pancreatic transplantation: post-transplantation development of foetal pancreatic iso- and allografts and suppression of rejection with mycophenolate mofetil (MMF) and cyclosporine-based immunesuppression[J]. Microsc Res Techniq, 1998, 43(4): 347-355.
27
Adams GA, Squires EC, Maestri M, et al. Regimens of IGF-1 treatment in fetal pancreas transplantation[J]. J Surg Res, 1997, 68(1): 73-78.
28
Wang L, Huang YB, Chen G, et al. Organogenesis of pancreatic anlagen allografted in rats[J]. Transplant Proc, 2006, 38(10): 3280-3282.
29
Hammerman MR. Organogenesis of endocrine pancreas from transplanted embryonic anlagen[J]. Transplant Immunology, 2004, 12: 249-258.
30
Rogers SA, Liapis H, Hammerman MR. Intraperitoneal transplantation of pancreatic anlagen[J]. ASAIO J, 2003, 49(5): 527-532.
31
Hammerman MR. Underpinnings of cellular organ replacement therapies[J]. Curr Opin Organ Transplant, 2014, 19(2): 131-132.
32
Soria B, Andrau E, Berna G, et al. Engineering pancreatic islets[J]. Pflugers Arch-Eur J Physiol, 2000, 440(1): 1-18.
33
Mullen Y, Shintaku IP. Fetal pancreas allografts for reversal of diabetes in rats. Ⅰ. Allograft survival in nonimmunosuppressed recipients[J]. Transplantation, 1980, 29(1): 35-42.
34
Wennberg L, Song Z, Bennet W, et al. Diabetic rats transplanted with adult porcine islets and immunosuppressed with cyclosporine A, mycophenolate mofetil and leflunomide remain normoglycemic for up to 100 days[J]. Transplantation, 2001, 719(9): 1024-1033.
35
Korsgren O, Jansson L. Discordant cellular xenografts revascularized in intermediate athymic hosts fail to induce a hyperacute rejection when transplanted into immunocompetent rats[J]. Transplantation, 1994, 57(9): 1408-1411.
36
Rogers SA, Chen F, Talcott M, et al. Islet cell engraftment and control of diabetes in rats after transplantation of pig pancreatic anlagen[J]. Am J Physiol Endocrinol Metab, 2004, 286(4): E502-E509.
37
Rogers SA, Liapis H, Hammerman MR. Normalization of glucose post-transplantation of pig pancreatic anlagen into non-immunosuppressed diabetic rats depends on obtaining anlagen prior to embryonic day 35[J]. Transpl Immunol, 2005, 14(2): 67-75.
38
Rogers SA, Chen F, Talcott M, et al. Glucose tolerance normalization following transplantation of pig pancreatic primordia into non-immunosuppressed diabetic ZDF rats[J]. Transpl Immunol, 2006, 16(3-4): 176-184.
Rogers SA, Chen F, Talcott MR, et al. Long-term engraftment following transplantation of pig pancreatic primordia into non-immunosuppressed diabetic rhesus macaques[J]. Xenotransplantation, 2007, 14(6): 591-602.
39
Hammerman MR. Organogenesis of kidney and endocrine pancreas: the window opens[J]. Organogenesis, 2007, 3(2): 59-66.
40
Rogers SA, Hammerman MR. Normalization of glucose post-transplantation into diabetic rats of pig pancreatic primordia preserved in vitro[J]. Organogenesis, 2008, 4(1): 48-51.
41
Rogers SA, Mohanakumar T, Liapis H, et al. Engraftment of cells from porcine islets of Langerhans and normalization of glucose tolerance following transplantation of pig pancreatic primordia in nonimmune-suppressed diabetic rats[J]. Am J Pathol, 2010, 177(2): 854-864.
42
Rogers SA, Tripathi P, Mohanakumar T, et al. Engraftment of cells from porcine islets of Langerhans following transplantation of pig pancreatic primordia in non-immunosuppressed diabetic rhesus macaques[J]. Organogenesis, 2011, 7(3): 154-162.
1
Hu R, Liu Y, Su M, et al. Transplantation of donor-origin mouse embryonic stem cell-derived thymic epithelial progenitors prevents the development of chronic graft-versus-host disease in mice[J]. Stem Cells Transl Med, 2017,6(1): 121-130.
2
Kim MJ, Lee Y, Jon S, et al. PEGylated bilirubin nanoparticle as ananti-oxidative and anti-inflammatory demulcent in pancreatic islet xenotransplantation[J]. Biomaterials, 2017,133: 242-252.
3
Hani H, Allaudin ZN, Mohd-Lila MA, et al. Caprine pancreaticislet xenotransplantation into diabetic immunosuppressed BALB/c mice[J]. Xenotransplantation, 2014, 21(2): 174-182.
4
Perez-Basterrechea M, Obaya AJ, Meana A, et al. Cooperation by fibroblasts and bone marrow-mesenchymal stem cells to improve pancreatic rat-to-mouse islet xenotransplantation[J]. PLoS One, 2013, 8(8): e73526.
5
Hammerman MR. Xenotransplantation of pancreatic and kidney primordia-where do we stand?[J]. Transpl Immunol, 2009, 21(2): 93-100.
6
Hammerman MR. Development of a novel xenotransplantation strategy for treatment of diabetes mellitus in rat hosts and translation to non-human primates[J]. Organogenesis, 2012, 8(2): 41-48.
7
Hammerman MR. Classic and current opinion in embryonic organ transplantation[J]. Curr Opin Organ Transplant, 2014, 19(2): 133-139.
8
Foglia RP, LaQuaglia M, Statter MB, et al. Fetal allograft survival in immunocompetent recipients is age dependent and organ specific[J]. Ann Surg, 1986, 204(7): 402-410.
9
Dekel B, Burakova T, Ben-Hur H, et al. Engraftment of human kidney tissue in rat radiation chimera: Ⅱ human fetal kidneys display reduced immunogenicity to adoptively trandferred human peripheral blood mononuclear cells and exhibit rapid growth and development[J]. Transplantation, 1997, 64(11): 1550-1558.
10
Statter M, Fahrner KJ, Barksdale EM, et al. Correlation of fetal kidney and testis congenic graft survival with reduced major histocompatibility complex burden[J]. Transplantation, 1989, 47(4): 651-660.
11
Dekel B, Marcus H, Herzel BH, et al. In vivo modulation of the allogeneic immune response by human fetal kidneys: the role of cytokines, chemokines, and cytolytic effector molecules[J]. Transplantation, 2000, 69(7): 1470-1478.
12
Hammerman MR. Engraftment of insulin-producing cells from porcine islets in non-immune-suppressed rats or nonhuman primates transplanted previously with embryonic pig pancreas[J]. J Transplant, 2011: 261352.
13
Thivolet C. New therapeutic approaches to type 1 diabetes: from prevention to cellular or gene therapies[J]. Clin Endocrinol, 2001, 55(5): 565-574.
[1] 曹雯佳, 刘学兵, 罗安果, 钟释敏, 邓岚, 王玉琳, 李赵欢. 超声矢量血流成像对2型糖尿病患者颈动脉壁剪切应力的研究[J/OL]. 中华医学超声杂志(电子版), 2024, 21(07): 709-717.
[2] 王杰, 袁泉, 王玥琦, 乔佳君, 谭春丽, 夏仲元, 刘守尧. 溃疡油在糖尿病足溃疡治疗中的应用效果及安全性观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 480-484.
[3] 徐志刚, 曹涛, 何亭, 李博奥, 魏婧韬, 张栋梁, 官浩, 杨薛康. 采用抗生素骨水泥治疗糖尿病患者心脏术后胸骨骨髓炎的临床效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 498-502.
[4] 别瑶, 曹志斌, 辛静, 王健楠, 惠宗光. 应用基质血管成分细胞治疗糖尿病足溃疡的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 453-456.
[5] 姜珊, 李湘燕, 田硕涵, 温冰, 何睿, 齐心. 采用优化抗感染治疗模式改善糖尿病足感染预后的临床观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(05): 398-403.
[6] 孟令凯, 李大勇, 王宁, 王桂明, 张炳南, 李若彤, 潘立峰. 袖状胃切除术对肥胖伴2型糖尿病大鼠的作用及机制研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 638-642.
[7] 李猛, 姜腊, 董磊, 吴情, 贾犇黎. 腹腔镜胃袖状切除术治疗肥胖合并2型糖尿病及脂肪胰的临床研究[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(05): 554-557.
[8] 郭倩男, 史嘉玮, 董念国. T细胞不同代谢方式在移植排斥反应中的研究进展[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 315-320.
[9] 严虹霞, 王晓娟, 张毅勋. 2 型糖尿病对结直肠癌患者肿瘤标记物、临床病理及预后的影响[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 483-487.
[10] 周学锋, 董哲毅, 冯哲, 蔡广研, 陈香美. 糖尿病肾脏疾病中西医结合诊疗指南计划书[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 301-305.
[11] 杜军霞, 赵小淋, 王浩然, 高志远, 王曼茜, 万楠熙, 张冬, 丁潇楠, 任琴琴, 段颖洁, 汤力, 朱晗玉. 2 型糖尿病的血液透析患者肠道微生物组学高通量测序分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 313-320.
[12] 邱岭, 朱旭丽, 浦坚, 邢苗苗, 吴佳玲. 糖尿病肾病患者肠道菌群生态特点与胃肠道功能障碍的关联性研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 453-458.
[13] 李玺, 蔡芸莹, 张永红, 苏恒. 假性软骨发育不全合并1型糖尿病一例[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 518-520.
[14] 王璇, 娜扎开提·尼加提, 雒洋洋, 蒋升. 皮肤晚期糖基化终末产物浓度与2型糖尿病微血管并发症的相关性[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 447-454.
[15] 王星, 陈园, 热孜万古丽·乌斯曼, 郭艳英. T2DM、Obesity、NASH、PCOS共同致病因素相关的分子机制[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 481-490.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?