切换至 "中华医学电子期刊资源库"

中华移植杂志(电子版) ›› 2021, Vol. 15 ›› Issue (01) : 1 -10. doi: 10.3877/cma.j.issn.1674-3903.2021.01.001

所属专题: 文献

论著

他克莫司致移植后高血糖相关胰岛细胞差异表达基因鉴定及功能通路分析
李璐1, 杨希1, 赵丽娟1, 黄明珠1,()   
  1. 1. 310003 杭州,浙江大学医学院附属第一医院临床药学部
  • 收稿日期:2020-12-04 出版日期:2021-02-25
  • 通信作者: 黄明珠
  • 基金资助:
    浙江省自然科学基金(LQY18H310001); 浙江省药学会医院药学专项科研资助项目(2020ZYY02)

Analysis and identification of differential expressed genes and functional pathways in islets of tacrolimus induced post-transplantation hyperglycemia

Lu Li1, Xi Yang1, Lijuan Zhao1, Mingzhu Huang1,()   

  1. 1. Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
  • Received:2020-12-04 Published:2021-02-25
  • Corresponding author: Mingzhu Huang
引用本文:

李璐, 杨希, 赵丽娟, 黄明珠. 他克莫司致移植后高血糖相关胰岛细胞差异表达基因鉴定及功能通路分析[J/OL]. 中华移植杂志(电子版), 2021, 15(01): 1-10.

Lu Li, Xi Yang, Lijuan Zhao, Mingzhu Huang. Analysis and identification of differential expressed genes and functional pathways in islets of tacrolimus induced post-transplantation hyperglycemia[J/OL]. Chinese Journal of Transplantation(Electronic Edition), 2021, 15(01): 1-10.

目的

研究他克莫司致移植后高血糖相关胰岛细胞差异表达基因、富集功能通路与共表达网络。

方法

利用美国国立生物技术信息中心GEO公共数据库中GSE140230 RNA测序芯片分析他克莫司和PBS处理后人胰岛细胞差异表达基因,并对差异基因进行富集通路功能注释,通过加权基因共表达网络分析他克莫司相关共表达模块枢纽基因,并采用GSE156903 RNA测序芯片和他克莫司致小鼠高血糖动物模型对主要差异表达基因进一步行验证。实时荧光定量PCR(qRT-PCR)结果使用GraphPad Prism 6软件进行非配对t检验分析。P<0.05为差异有统计学意义。

结果

GSE140230 RNA测序芯片分析共鉴定出他克莫司和PBS处理后人胰岛细胞差异表达基因268个,这些差异表达基因形成的蛋白-蛋白相互作用网络中有126个节点和176条边,其中INS、AGT、GAST和ADRA1D为枢纽基因。MCODE插件鉴定蛋白-蛋白相互作用网络中有5个紧密联系模块。基因集富集分析结果显示这些差异表达基因富集于细胞表面受体信号通路、磷代谢过程、含磷酸盐化合物代谢过程、多细胞生物过程正向调控及G蛋白偶联受体信号通路,上述富集通路中包含38个差异基因,其中上调差异基因均存在于G蛋白偶联受体信号通路,下调差异基因富集于其他4条功能通路。加权基因共表达网络分析(WGCNA)共聚类出12个共表达基因模块,其中黄色模块与他克莫司致胰岛细胞损伤正相关度最高(r=0.64,P=0.07),主要富集于胰岛素抵抗和硫代谢等通路;黑色模块负相关度最高(r=-0.60,P=0.09),主要富集于腺苷5′-单磷酸激活蛋白激酶信号通路、亨廷顿病、军团菌病及长寿调节途径-多物种等通路。WGCNA共表达网络分析结果提示黄色模块及黑色模块与他克莫司高度相关,其中黑色和黄色模块分别含有61、56个枢纽基因;黄色模块关键差异基因为LDLRAD3与JMY,黑色模块为IER3与KISS1R。qRT-PCR检测结果显示,DMSO处理组IER3相对表达量(0.20±0.02)高于他克莫司处理组(0.14±0.02),差异有统计学意义(t=3.288,P<0.05),其余关键差异基因表达差异均无统计学意义(t=0.486、0.742和1.731,P均>0.05)。GSE156903 RNA测序芯片分析显示,IER3为他克莫司处理组表达下调的基因。免疫荧光结果显示他克莫司处理组小鼠IER3蛋白表达量下降;荧光共定位分析显示DMSO处理组中约99%胰岛素阳性染色区域显示为IER3阳性染色,而他克莫司处理组仅约65%胰岛素阳性细胞共表达IER3。STRING数据库分析结果显示,IER3与蛋白磷酸酶2相关基因、丝裂原活化蛋白激酶相关基因、TNF和SLC37A2等存在蛋白-蛋白相互作用。

结论

IER3可能为他克莫司致移植后新发糖尿病(PTDM)重要调节基因,可能可以作为PTDM防治潜在药物治疗靶点。

Objective

To investigated the functional pathways enriched and differential expressed genes in islet of tacrolimus induced post-transplantation hyperglycemia.

Methods

Differential expressed genes between tacrolimus and PBS treatment were filtered from the dataset GSE140230 from National Center for Biotechnology Information GEO database. Functional pathway annotations were conducted by gene set enrichment analysis and weighted gene co-expression network analysis. Master differential expressed genes screened from highly correlated modules of co-expression network analysis were then validated in dataset GSE156903 and tacrolimus induced diabetic mice islets. The results of quantiative real-time PCR (qRT-PCR) were compared with uncoupled t test in GraphPad Prism 6. A P<0.05 was considered statistically significant.

Results

Altogether 268 differential expressed genes were filtered . The protein-protein interaction network constructed by these differential expressed genes had 126 nodes and 176 edges. INS, AGT, GAST and ADRA1D were the seed genes with highest degree of the protein-protein interaction network. MCODE plugin identified five close link modules in the protein-protein interaction network. Differential expressed genes mainly enriched in cell surface receptor signaling pathway, phosphorus metabolic process, phosphate-containing compound metabolic process, positive regulation of multicellular organismal process and G protein-coupled receptor signaling pathway. Altogether 38 differential expressed genes were contained in these pathways, and upregulated differential expressed genes were all enriched in G protein-coupled receptor signaling pathway, while downregulated differential expressed genes were enriched in other 4 pathways. Weighted gene correlation network analysis (WGCNA) screened 12 co-expression modules. Yellow module was the most positive correlated module (r=0.64, P=0.07), genes in yellow module were mainly enriched in insulin resistance and sulfur metabolism. Black module was the most negative correlated module (r=-0.60, P=0.09). Genes in black module were mainly enriched in adenosine 5′-monophosphate-activated protein kinase signaling pathway, Huntington disease, legionellosis and longevity regulatin pathway-multiple species. There were 61 and 56 seed genes in yellow module and black modules, respectively. The results of qRT-PCR showed that there was statistic difference for IER3 expression of islets between tacrolimus and DMSO treated mice (t=3.288, P<0.05), while KISS1R, LDLRAD3 and JMY were not (t=0.486, 0.742 and 1.731, all P>0.05). IER3 was also the differential expressed genes of tacrolimus treated islets in GSE156903. Immunofluorescence analysis showed that IER3 protein expression was decreased in tacrolimus-treated mice. The co-locoliazation analysis showed that almost 99% of insulin-positive staining area showed the postive-IER3 staining, while only 65% of the insulin-positive staining area was IER3 positive in tacrolimus-treated group. STRING database showed that IER3 was interacted with protein phosphatase 2 related genes, mitogen-activated protein kinase related genes, TNF and SLC37A2.

Conclusions

IER3 may play an important role in tacrolimus induced diabetes. Our findings may provide potential targets for prevention and treatment of tacrolimus induced post-transplantation diabetes mellitus.

图1 他克莫司致胰岛细胞功能损伤差异表达倍数变化前10位上调及下调基因热图
图2 他克莫司组胰岛细胞差异基因蛋白-蛋白相互作用网络及其紧密联系模块
图3 他克莫司组胰岛细胞差异表达基因基因集富集分析及富集通路中差异基因分布
图4 他克莫司致胰岛细胞损伤基因共表达网络分析及共表达网络功能通路富集
图5 他克莫司高度相关模块基因本体生物学过程以及京都基因与基因组百科全书通路富集分析
表1 他克莫司致胰岛细胞损伤相关模块加权基因共表达网络分析筛选出的枢纽基因
图6 他克莫司致胰岛细胞损伤关键差异基因鉴定和分析
1
Mizrahi N, Braun M, Ben GT, et al. Post-transplant diabetes mellitus: incidence, predicting factors and outcomes[J]. Endocrine, 2020, 69(2): 303-309.
2
Shivaswamy V, Boerner B, Larsen J. Post-transplant diabetes mellitus: causes, treatment, and impact on outcomes[J]. Endocr Rev, 2016, 37(1): 37-61.
3
Hecking M, Sharif A, Eller K, et al. Management of post-transplant diabetes: immunosuppression, early prevention, and novel antidiabetics[J]. Transpl Int, 2020, 34(1):27-48.
4
Tnshoff B. Immunosuppressants in organ transplantation[J]. Handb Exp Pharmacol, 2019, 261:441-469.
5
Xia M, Yang H, Tong X, et al. Risk factors for new-onset diabetes mellitus after kidney transplantation: a systematic review and meta-analysis[J]. J Diabetes Investig, 2020, 12(1): 109-122.
6
李璐,陈慧真,梁星光,等. 他克莫司致移植后糖尿病发病机制的研究和治疗进展[J/CD]. 中华移植杂志:电子版,2017, 11(1): 44-49.
7
Dai C, Walker JT, Prasad N, et al. Tacrolimus- and sirolimus-induced human b cell dysfunction is reversible and preventable[EB/OL]. (2020-01-31) [2020-12-01].

URL    
8
Kolic J, Johnson JD. Differential effects of voclosporin and tacrolimus on insulin secretion from human islets [EB/OL]. (2020-08-27) [2020-12-01].

URL    
9
Ling Q, Huang H, Han Y, et al. The tacrolimus-induced glucose homeostasis imbalance in terms of the liver: from bench to bedside[J]. Am J Transplant, 2020, 20(3): 701-713.
10
Trinanes J, Ten DP, Groen N, et al. Tacrolimus-Induced BMP/SMAD signaling associates with metabolic stress-activated FOXO1 to trigger beta-cell failure[J]. Diabetes, 2020, 69(2): 193-204.
11
Lim SW, Jin L, Jin J, et al. Effect of exendin-4 on autophagy clearance in beta cell of rats with tacrolimus-induced diabetes mellitus[J]. Sci Rep, 2016, 6: 29921.
12
Trinanes J, Rodriguez-Rodriguez AE, Brito-Casillas Y, et al. Deciphering tacrolimus-induced toxicity in pancreatic beta cells[J]. Am J Transplant, 2017, 17(11): 2829-2840.
13
Lombardi A, Trimarco B, Iaccarino G, et al. Impaired mitochondrial calcium uptake caused by tacrolimus underlies beta-cell failure[J]. Cell Commun Signal, 2017, 15(1): 47.
14
Redmon JB, Olson LK, Armstrong MB, et al. Effects of tacrolimus (FK506) on human insulin gene expression, insulin mRNA levels, and insulin secretion in HIT-T15 cells[J]. J Clin Invest, 1996, 98(12): 2786-2793.
15
Hernandez-Fisac I, Pizarro-Delgado J, Calle C, et al. Tacrolimus-induced diabetes in rats courses with suppressed insulin gene expression in pancreatic islets[J]. Am J Transplant, 2007, 7(11): 2455-2462.
16
Rodriguez-Rodriguez AE, Donate-Correa J, Rovira J, et al. Inhibition of the mTOR pathway: a new mechanism of beta cell toxicity induced by tacrolimus[J]. Am J Transplant, 2019, 19(12): 3240-3249.
17
Lee S, Moon JY, Lee SH, et al. Angiotensinogen polymorphisms and post-transplantation diabetes mellitus in Korean renal transplant subjects[J]. Kidney Blood Press Res, 2013, 37(2-3): 95-102.
18
Ditzel J, Lervang HH. Disturbance of inorganic phosphate metabolism in diabetes mellitus: temporary therapeutic intervention trials[J]. Diabetes Metab Syndr Obes, 2009, 2: 173-177.
19
Ditzel J, Lervang HH. Disturbance of inorganic phosphate metabolism in diabetes mellitus: its impact on the development of diabetic late complications[J]. Curr Diabetes Rev, 2010, 6(5): 323-333.
20
Jin J, Lim SW, Jin L, et al. Effects of metformin on hyperglycemia in an experimental model of tacrolimus- and sirolimus-induced diabetic rats[J]. Korean J Intern Med, 2017, 32(2): 314-322.
21
Chakkera HA, Kudva Y, Kaplan B. Calcineurin inhibitors: pharmacologic mechanisms impacting both insulin resistance and insulin secretion leading to glucose dysregulation and diabetes mellitus[J]. Clin Pharmacol Ther, 2017, 101(1): 114-120.
22
NCBI. IER3 immediate early response 3[DB/OL]. (2020-08-22) [2020-11-10].

URL    
23
Luo K, Yu JH, Quan Y, et al. Therapeutic potential of coenzyme Q10 in mitochondrial dysfunction during tacrolimus-induced beta cell injury[J]. Sci Rep, 2019, 9(1): 7995.
24
Cai L, Hu C, Yu S, et al. Identification and validation of a six-gene signature associated with glycolysis to predict the prognosis of patients with cervical cancer[J]. Bmc Cancer, 2020, 20(1): 1133.
25
Haythorne E, Rohm M, van de Bunt M, et al. Diabetes causes marked inhibition of mitochondrial metabolism in pancreatic beta-cells[J]. Nat Commun, 2019, 10(1): 2474.
26
Rostambeigi N, Lanza IR, Dzeja PP, et al. Unique cellular and mitochondrial defects mediate FK506-induced islet beta-cell dysfunction[J]. Transplantation, 2011, 91(6): 615-623.
[1] 王招娣, 孙丽丽, 温佩婷, 吴坤. 成人肠外营养患者住院期间胰岛素添加管理的证据总结[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(01): 32-38.
[2] 贾蔓箐, 卞婧, 周业平. 对小剂量胰岛素局部注射促进脂肪干细胞移植成活及改善糖尿病创面愈合临床观察[J/OL]. 中华损伤与修复杂志(电子版), 2023, 18(04): 312-316.
[3] 王本泉, 崔凡, 邱钧, 项本宏. 不同甲状腺手术方式对改善胰岛素抵抗的影响[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(02): 208-211.
[4] 潘裕华, 李锐钊, 刘菊娥, 曾英彤, 钟诗龙, 赖伟华. 心脏移植术后急性肾损伤再发低血药浓度他克莫司致慢性肾毒性一例[J/OL]. 中华移植杂志(电子版), 2024, 18(01): 40-44.
[5] 周玲, 吴园明. 复方异丙托溴铵对AECOPD患者肺功能及血清IGF-Ⅱ、SOD水平的影响[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(01): 103-106.
[6] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[7] 陈俊秋, 邬绿莹, 马予洁, 林娜, 刘飞, 陈津. 基于lncRNA微阵列芯片技术探索间充质干细胞外泌体增强小鼠胰岛β细胞抗低氧损伤的潜在机制[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 129-136.
[8] 晏婷, 梁瑶瑶, 陈津. 干细胞衍生的胰岛素分泌细胞治疗糖尿病的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2023, 13(06): 355-362.
[9] 程柏凯, 杨光. 高胰岛素-正葡萄糖钳夹技术评估慢性肾脏病患者胰岛素抵抗的研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 334-339.
[10] 孙琳, 韩萍萍, 张碧琳, 张军霞. 血清WISP1水平与2型糖尿病患者血尿酸升高的相关性[J/OL]. 中华临床医师杂志(电子版), 2024, 18(02): 178-182.
[11] 王嘉琳, 宋青. 妊娠合并胰岛素抵抗诊治的研究进展[J/OL]. 中华产科急救电子杂志, 2024, 13(01): 29-32.
[12] 何玉花, 钟欢妹, 王文惠, 沈永棋, 刘映云, 顾国威, 陈丹娜. 不同表型多囊卵巢综合征患者代谢指标及肥胖相关指标对多囊卵巢综合征合并代谢综合征人群的诊断效能分析[J/OL]. 中华临床实验室管理电子杂志, 2024, 12(04): 212-220.
[13] 张杨杨, 项楚淇, 朱满生. 肌少性肥胖与非酒精性脂肪性肝病间的关系以及研究进展[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(04): 276-282.
[14] 吴晓明, 翟仰魁, 王娟, 张硕, 许杰, 潘从清. 男性2 型糖尿病患者空腹C 肽和定量胰岛素敏感性检测指数与血浆致动脉粥样硬化指数的相关性[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(04): 288-294.
[15] 崔磊, 徐东升. 减重手术治疗肥胖患者胰岛素抵抗的研究进展[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(02): 127-132.
阅读次数
全文


摘要