切换至 "中华医学电子期刊资源库"

中华移植杂志(电子版) ›› 2023, Vol. 17 ›› Issue (01): 42 -46. doi: 10.3877/cma.j.issn.1674-3903.2023.01.006

论著

髓源性抑制细胞通过抑制炎症反应减轻小鼠肾脏缺血再灌注损伤
张星哲1, 郑秉暄1, 邓格1, 豆猛1, 石玉婷1, 卫田1, 郭映聪1, 韩锋2, 赵艳龙3, 丁晨光1, 田普训1,()   
  1. 1. 710061 西安交通大学第一附属医院肾脏病医院肾移植科 西安交通大学器官移植研究所
    2. 710068 西安,陕西省人民医院烧伤整形医学美容外科
    3. 710003 西安,陕西省中医医院肾病医院血液透析室
  • 收稿日期:2023-01-16 出版日期:2023-02-25
  • 通信作者: 田普训
  • 基金资助:
    国家自然科学基金(81870514,82100798); 陕西省重大基础研究项目(2017ZDJC-09)

Myeloid-derived suppressor cells alleviate renal ischemia-reperfusion injury in mice by inhibiting inflammatory response

Xingzhe Zhang1, Bingxuan Zheng1, Ge Deng1, Meng Dou1, Yuting Shi1, Tian Wei1, Yingcong Guo1, Feng Han2, Yanlong Zhao3, Chenguang Ding1, Puxun Tian1,()   

  1. 1. Department of Kidney Transplantation, Division of Kidney Diseases, First Affiliated Hospital, Xi′an Jiaotong University School of Medicine, Institute of Organ Transplantation, Xi′an Jiaotong University, Xi′an 710061, China
    2. Department of Burn and Plastic Surgery, Shaanxi Provincial People′s Hospital, Xi′an 710068, China
    3. Department of Hemodialysis, Hospital of Nephropathy, Shaanxi Provincial Hospital of Chinese Medicine, Xi′an 710003, China
  • Received:2023-01-16 Published:2023-02-25
  • Corresponding author: Puxun Tian
目的

探讨髓源性抑制细胞(MDSC)对小鼠肾脏缺血再灌注损伤(IRI)的作用及其可能机制。

方法

15只雄性C57BL/6小鼠分为假手术组、IRI组、IRI+MDSC组,每组5只。所有小鼠采取背部双侧切口,切除左肾。假手术组小鼠暴露右肾50 min后缝合,IRI组夹闭右侧肾蒂50 min后开放灌注,IRI+MDSC组于开放灌注1 h内经尾静脉输注使用C57BL/6小鼠骨髓细胞诱导的MDSC。恢复灌注后24h,留取小鼠血液及肾脏和脾脏组织标本,观察肾组织病理变化,检测血尿素氮和肌酐水平。ELISA检测血清中细胞因子TNF-α、IFN-γ、IL-6和IL-10水平。流式细胞术检测脾脏中T细胞活化。符合正态分布的计量数据以均数±标准差(±s)表示,采用单因素方差分析比较。

结果

与IRI组相比,IRI+MDSC组小鼠肾功能明显改善,血尿素氮和血清肌酐水平均低于IRI组([(29.6±3.1)和(34.1±1.4)mmol/L,(105±13)和(176±20)μmol/L,P均<0.05]。IRI+MDSC组肾小管上皮细胞坏死程度、范围及炎性细胞浸润程度较IRI组减轻,Paller评分优于IRI组[(55.0±3.0)和(40.6±6.7)分,P<0.05)]。IRI+MDSC组血清中促炎性细胞因子水平均低于IRI组(P均<0.05),TNF-α分别为(452±55)和(605±73)pg/mL,IFN-γ分别为(405±101)和(576±76)pg/mL,IL-6分别为(459±37)和(863±20)pg/mL;而具有抗炎作用的细胞因子IL-10水平则高于IRI组,分别为(1519±244)和(926±66)pg/mL。同时,IRI+MDSC组小鼠脾脏中活化的CD4T细胞和CD8T细胞水平均低于IRI组,分别为(15.6±1.3)%和(20.2±1.4)%、(31.8±1.8)%和(40.4±2.0)%,差异均有统计学意义(P均<0.05)。

结论

体外诱导MDSC可通过抑制IRI后机体的炎症反应,减轻肾损伤。

Objective

To investigate the effect and mechanism of myeloid-derived suppressor cells (MDSCs) on renal ischemia-reperfusion injury (IRI) in mice.

Methods

A total of 15 male C57BL/6 mice were randomly divided into Sham group (n=5), IRI group (n=5), IRI combined with MDSCs transfusion group (IRI+ MDSC group, n=5). Twenty-four hours after perfusion, blood and kidney tissue samples of mice were collected, and the pathological changes of kidney tissue were observed by hematoxylin-eosin (HE) staining, and the contents of blood urea nitrogen (BUN) and serum creatinine (Cr) were detected. Serum levels of cytokines TNF-α, IFN-γ, IL-6 and IL-10 were detected by ELISA. T-cell activation in spleen was detected by flow cytometry. One-way ANOVA was used to compare the differences between multiple groups.

Results

Compared with the IRI group, the IRI+ MDSC group showed significantly improved renal function [Cr: (105±13) and (176±20) μmol/L, BUN: (34.1±1.4) and (29.6±3.1) mmol/L, P<0.05]. The necrosis degree and range of renal tubular epithelial cells and inflammatory cell infiltration degree were reduced in the IRI+ MDSC group. Paller scores were better in the IRI+ MDSC group than those in the IRI group [(55.0±3.0) vs. (40.6±6.7), P<0.05]. Serum levels of pro-inflammatory cytokines [TNF-α: (452±55) vs. (605±73) pg/mL, IFN-γ: (405±101) vs. (576±76) pg/mL, and IL-6: (459±37) vs. (863±20) pg/mL] in the IRI+ MDSC group were lower than those in IRI group (all P<0.05), respectively. However, the level of anti-inflammatory cytokine IL-10 was higher in the IRI+ MDSC group [(1519±244) pg/mL]. At the same time, the levels of activated CD4+ T cells and CD8+ T cells in spleen of the IRI+ MDSC group were lower than those of the IRI group, which were (15.6±1.3)% and (20.2±1.4)%, (31.8±1.8)% and (40.4±2.0)%, respectively, and the differences were statistically significant (all P<0.05).

Conclusion

MDSCs induced in vitro can alleviate renal injury by inhibiting the inflammatory response after IRI.

图1 GM-CSF联合PGE2体外诱导的MDSC表面标志物及其抑制功能实验注:GM-CSF.粒细胞-巨噬细胞集落刺激因子;PGE2.前列腺素E2; MDSC.髓源性抑制细胞;a和b.流式细胞术检测MDSC表面标志物及比例;c.流式细胞术检测MDSC对CD8 T细胞增殖的抑制功能;*.P<0.05
表1 三组小鼠肾功能、细胞因子和T细胞活化水平比较(±s)
图2 三组小鼠恢复灌注后24 h肾组织病理检查结果(HE ×400)注:IRI.缺血再灌注损伤;MDSC.髓源性抑制细胞;a.假手术组;b. IRI组;c. IRI+MDSC组
1
Nieuwenhuijs-Moeke GJ, Pischke SE, Berger SP, et al. Ischemia and reperfusion injury in kidney transplantation: relevant mechanisms in injury and repair[J]. J Clin Med, 20209(1):253.
2
Veglia F, Perego M, Gabrilovich D. Myeloid-derived suppressor cells coming of age[J]. Nat Immunol, 201819(2):108-119.
3
Dugast AS, Haudebourg T, Coulon F, et al. Myeloid-derived suppressor cells accumulate in kidney allograft tolerance and specifically suppress effector T cell expansion[J]. J Immunol, 2008180(12):7898-7906.
4
Ji J, Zhuang Y, Lin Z, et al. Interferon-γ-induced myeloid-derived suppressor cells aggravate kidney ischemia-reperfusion injury by regulating innate immune cells[J]. Nephron, 2022146(1):99-109.
5
Paller MS, Hoidal JR, Ferris TF. Oxygen free radicals in ischemic acute renal failure in the rat[J]. J Clin Invest, 198474(4):1156-1164.
6
Veglia F, Perego M, Gabrilovich D. Myeloid-derived suppressor cells coming of age[J]. Nat Immunol, 201819(2):108-119.
7
Dugast AS, Haudebourg T, Coulon F, et al. Myeloid-derived suppressor cells accumulate in kidney allograft tolerance and specifically suppress effector T cell expansion[J]. J Immunol, 2008180(12):7898-7906.
8
Tomić S, Joksimović B, Bekić M, et al. Prostaglanin-E2 potentiates the suppressive functions of human mononuclear myeloid-derived suppressor cells and increases their capacity to expand IL-10-producing regulatory T cell subsets[J]. Front Immunol, 201910:475.
9
Koehn BH, Apostolova P, Haverkamp JM, et al. GVHD-associated, inflammasome-mediated loss of function in adoptively transferred myeloid-derived suppressor cells[J]. Blood, 2015, 126(13):1621-1628.
10
Medzhitov R. Inflammation 2010: new adventures of an old flame[J]. Cell, 2010, 140(6):771-776.
11
Chen GY, Nuñez G. Sterile inflammation: sensing and reacting to damage[J]. Nat Rev Immunol, 201010(12):826-837.
12
Kurts C, Panzer U, Anders HJ, et al. The immune system and kidney disease: basic concepts and clinical implications[J]. Nat Rev Immunol, 201313(10):738-753.
13
Gu J, Sun P, Zhao H, et al. Dexmedetomidine provides renoprotection against ischemia-reperfusion injury in mice[J]. Crit Care, 201115(3):R153.
14
Rao J, Lu L, Zhai Y. T cells in organ ischemia reperfusion injury[J]. Curr Opin Organ Transplant, 201419(2):115-120.
15
Pegues MA, McWilliams IL, Szalai AJ. C-reactive protein exacerbates renal ischemia-reperfusion injury: are myeloid-derived suppressor cells to blame?[J]. Am J Physiol Renal Physiol, 2016311(1):F176-F181.
16
Ren JP, Wang L, Zhao J, et al. Decline of miR-124 in myeloid cells promotes regulatory T-cell development in hepatitis C virus infection[J]. Immunology, 2017150(2):213-220.
17
Messmann JJ, Reisser T, Leithäuser F, et al. In vitro-generated MDSCs prevent murine GVHD by inducing type 2 T cells without disabling antitumor cytotoxicity[J]. Blood, 2015126(9):1138-1148.
18
Sinha P, Clements VK, Fulton AM, et al. Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells[J]. Cancer Res, 200767(9):4507-4513.
19
Sinha P, Parker KH, Horn L, et al. Tumor-induced myeloid-derived suppressor cell function is independent of IFN-γ and IL-4Rα[J]. Eur J Immunol, 201242(8):2052-2059.
20
黎贵芸,冯强,胡雄,等. COX-2/PGE2在肿瘤发生发展和重塑肿瘤微环境中的研究进展[J]. 中国肿瘤临床202047(16):840-846.
[1] 周伟, 蔡恒, 范海迪, 李惠中, 王传霞, 顾茂胜. cblC型甲基丙二酸血症MMACHC基因新突变对小鼠神经细胞凋亡及Wnt/β-catenin信号通路的作用机制[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(05): 528-539.
[2] 刘甜甜, 李明, 朱含汀, 倪涛, 彭银波, 方勇. 创缘铁过载的临床样本验证与铁过载对小鼠创面愈合的影响[J]. 中华损伤与修复杂志(电子版), 2022, 17(06): 475-481.
[3] 张秀杨, 张龙飞, 陈世远, 高涌. 缺氧诱导因子1α介导单羧酸转运蛋白1表达参与短链脂肪酸对肠道缺氧保护作用的研究[J]. 中华普通外科学文献(电子版), 2023, 17(01): 18-23.
[4] 疏文志, 杨梦凡, 潘斌华, 苏仁义, 林祖源, 杨墨丹, 张镇胜, 宋一粟, 卢正阳, 郑树森, 徐骁, 魏绪勇. 人羊膜上皮干细胞通过调节M1/M2型巨噬细胞极化减轻小鼠肝脏缺血再灌注损伤的实验研究[J]. 中华移植杂志(电子版), 2023, 17(01): 36-41.
[5] 于长江, 赵敏杰, 龚建平. 库普弗细胞在肝移植中的作用研究进展[J]. 中华移植杂志(电子版), 2022, 16(05): 314-318.
[6] 杨晓健, 张炎, 冯嘉荣, 刘卓杰, 张浩. 先天性输精管缺如合并肾脏畸形三例CFTR基因突变检测并文献复习[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(02): 110-113.
[7] 陈杰桓, 许志荣, 刘颖培, 杨帅, 周芙蓉, 陈斌, 谭雷. 超声造影对急性肾损伤治疗后肾血流灌注水平的评价[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(01): 58-62.
[8] 任伙明, 苏舒, 张健, 范彬. 腹腔镜经腹腹膜前与疝环充填式修补术治疗腹股沟疝对比分析[J]. 中华疝和腹壁外科杂志(电子版), 2022, 16(06): 682-686.
[9] 陈彤, 张帆, 房橙橙, 李全海, 闫宝勇, 张君. 间充质干细胞与巨噬细胞相互作用机制的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(06): 372-377.
[10] 孙雪峰. 肾素-血管紧张素-醛固酮系统抑制剂治疗伴有心力衰竭的慢性肾脏病[J]. 中华肾病研究电子杂志, 2022, 11(06): 301-306.
[11] 熊琳, 欧三桃. 慢性肾脏病的"骨-血管轴"的交互因子研究进展[J]. 中华肾病研究电子杂志, 2022, 11(06): 342-346.
[12] 罗珊, 欧三桃. 激活素A在慢性肾脏病血管钙化中的作用机制研究进展[J]. 中华肾病研究电子杂志, 2022, 11(06): 353-356.
[13] 李欢, 唐钰书, 王璇, 谢席胜. 慢性肾脏病患者肺部感染的诊治进展[J]. 中华肾病研究电子杂志, 2022, 11(05): 285-289.
[14] 王明. 糖尿病肾脏病[J]. 中华肾病研究电子杂志, 2022, 11(05): 300-300.
[15] 刘志强, 窦项洁, 刘白露, 董晓萌, 鲍俊宇. 银杏达莫注射液对大鼠肝缺血再灌注损伤的保护作用机制研究[J]. 中华诊断学电子杂志, 2022, 10(04): 259-265.
阅读次数
全文


摘要