切换至 "中华医学电子期刊资源库"

中华移植杂志(电子版) ›› 2023, Vol. 17 ›› Issue (05) : 313 -320. doi: 10.3877/cma.j.issn.1674-3903.2023.05.010

综述

嵌合抗原受体T细胞治疗多发性骨髓瘤新进展
陈瑜, 尤良顺, 孟海涛, 杨敏()   
  1. 310003 杭州,浙江大学医学院附属第一医院血液科 浙江省血液肿瘤(诊治)重点实验室
  • 收稿日期:2023-08-31 出版日期:2023-10-25
  • 通信作者: 杨敏
  • 基金资助:
    浙江省公益重点项目(LZ23H080002)

New progress of chimeric antigen receptor T cells in the treatment of multiple myeloma

Yu Chen, Liangshun You, Haitao Meng, Min Yang()   

  1. Department of Hematology, the First Affiliated Hospital Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Hangzhou 310003, China
  • Received:2023-08-31 Published:2023-10-25
  • Corresponding author: Min Yang
引用本文:

陈瑜, 尤良顺, 孟海涛, 杨敏. 嵌合抗原受体T细胞治疗多发性骨髓瘤新进展[J/OL]. 中华移植杂志(电子版), 2023, 17(05): 313-320.

Yu Chen, Liangshun You, Haitao Meng, Min Yang. New progress of chimeric antigen receptor T cells in the treatment of multiple myeloma[J/OL]. Chinese Journal of Transplantation(Electronic Edition), 2023, 17(05): 313-320.

多发性骨髓瘤(MM)是恶性浆细胞病,是第二大常见的血液系统恶性肿瘤,目前尚缺乏治愈的手段。尽管新的药物不断涌现,但是MM的耐药和复发仍是目前研究的重点,迫切需要更好的疗法。嵌合抗原受体T细胞(CAR-T)疗法是近几年新兴的治疗方式,在MM治疗中表现出了较好的治疗前景,为治愈MM带来希望。本文从CAR-T疗法临床疗效、治疗安全性和可及性等方面阐述其在MM治疗中的新进展,以期进一步优化治疗策略。

Multiple myeloma (MM) is a kind of malignant tumor of plasma cells, ranking as the second most common hematological malignancy, and has no cure. Despite the introduction of new drugs, the challenge of drug resistance and disease relapse in MM remains a primary focus of research, highlighting the urgent need for improved treatment options. Chimeric antigen receptor T cells (CAR-T) therapy is a new promising approach in recent years, which brings hope for curing of MM. This paper summarizes the advancements of CAR-T therapy in the treatment of MM, covering the aspects of clinical efficacy, safety and accessibility, with the aim of optimizing the treatment strategy.

1
Kane SF. Bone tumors: multiple myeloma[J]. FP Essent, 2020493:30-35.
2
Cowan AJ, Tuazon SA, Poruguese AJ, et al. Chimeric antigen receptor T Cells for multiple myeloma:The journey so far and the road ahead[J]. Cancer J, 202127(2):112-118.
3
Pulte D, Jansen L, Brenner H. Changes in long term survival after diagnosis with common hematologic malignancies in the early 21st century[J]. Blood Cancer J, 2020, 10(5): 56.
4
Choi T, Kang Y. Chimeric antigen receptor (CAR) T-cell therapy for multiple myeloma[J]. Pharmacol Ther, 2022, 232: 108007.
5
中国医师协会血液科医师分会,中华医学会血液学分会.嵌合抗原受体T细胞治疗多发性骨髓瘤中国血液临床专家共识(2022年版)[J].中华血液学杂志2022, 43(4):265-271.
6
Song EZ, Milone MC. Pharmacology of chimeric antigen receptor-modified T cells[J]. Annu Rev Pharmacol Toxicol, 202161:805-829.
7
Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity[J]. Proc Natl Acad Sci U S A, 198986(24):10024-10028.
8
Stock S, Schmitt M, Sellner L. Optimizing manufacturing protocols of chimeric antigen receptor T cells for improved anticancer immunotherapy[J]. Int J Mol Sci, 201920(24):6223.
9
Liu Q, Li J, Zheng H, et al. Adoptive cellular immunotherapy for solid neoplasms beyond CAR-T[J]. Mol Cancer, 2023, 22(1):28.
10
Zhang P, Zhang G, Wan X. Challenges and new technologies in adoptive cell therapy[J]. J Hematol Oncol, 2023, 16(1):97.
11
Sun W, Liang AB, Huang H, et al. Strategies to optimize chimeric antigen receptor T-cell therapy in hematologic malignancies: Chinese experience[J]. Haematologica, 2023108(8):2011-2028.
12
Abramson JS, Palomba ML, Gordon LI, et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study[J]. Lancet, 2020, 396(10254): 839-852.
13
Pan J, Yang JF, Deng BP, et al. High efficacy and safety of low-dose CD19-directed CAR-T cell therapy in 51 refractory or relapsed B acute lymphoblastic leukemia patients[J]. Leukemia, 2017, 31(12):2587-2593.
14
Zhang X, Lu XA, Yang J, et al. Efficacy and safety of anti-CD19 CAR T-cell therapy in 110 patients with B-cell acute lymphoblastic leukemia with high-risk features[J]. Blood Adv, 2020, 4(10): 2325-2338.
15
AnagnostouT, RiazIB, HashmiSK, et al. Anti-CD19 chimeric antigen receptor T-cell therapy in acute lymphocytic leukaemia: a systematic review and meta-analysis[J]. Lancet Haematol, 2020, 7(11): e816-e826.
16
Pasvolsky O, Kebriaei P, Shah BD, et al. Chimeric antigen receptor T-cell therapy for adult B-cell acute lymphoblastic leukemia: state-of-the-(C)ART and the road ahead[J]. Blood Adv, 2023, 7(14):3350-3360.
17
Lin MJ, Svensson-Arvelund J, Lubitz GS, et al. Cancer vaccines: the next immunotherapy frontier[J]. Nat Cancer, 2022, 3(8):911-926.
18
Padda J, Khalid K, Zubair U, et al. Chimeric antigen receptor T cell therapy and its significance in multiple myeloma[J]. Cureus, 202113(6): e15917.
19
Kegyes D, Constantinescu C, Vrancken L, et al. Patient selection for CAR T or BiTE therapy in multiple myeloma: Which treatment for each patient?[J]. J Hematol Oncol, 202215(1):78.
20
Kleber M, Ntanasis-Stathopoulos I, Terpos E. BCMA in multiple myeloma-a promising key to therapy[J]. J Clin Med, 2021, 10(18):4088.
21
Baker DJ, Arany Z, Baur JA, et al. CAR T therapy beyond cancer: the evolution of a living drug[J]. Nature, 2023, 619(7971):707-715.
22
Ali SA, Shi V, Maric I, et al. T cells expressing an anti-B- cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma[J]. Blood, 2016, 128(13):1688-1700.
23
Brudno JN, Maric I, Hartman SD, et al. T cells genetically modified to express an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma[J]. J Clin Oncol, 201836(22):2267-2280.
24
Cohen AD, Garfall AL, Stadtmauer EA, et al. B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma[J]. J Clin Invest, 2019, 129(6): 2210-2221.
25
Roex G, Timmers M, Wouters K, et al. Safety and clinical efficacy of BCMA CAR-T-cell therapy in multiple myeloma[J]. J Hematol Oncol, 2020, 13(1):164.
26
Raje N, Berdeja J, Lin Y, et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma[J]. N Engl J Med, 2019380(18):1726-1737.
27
Munshi NC, Anderson LD Jr, Shah N, et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma[J]. N Engl J Med, 2021384(8):705-716.
28
Rodriguez-Otero P, Ailawadhi S, Arnulf B, et al. Ide-cel or standard regimens in relapsed and refractory multiple myeloma[J]. N Engl J Med, 2023388(11):1002-1014.
29
Berdeja JG, Madduri D, Usmani SZ, et al. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CAR-TITUDE-1): a phase 1b/2 open-label study[J]. Lancet2021398(10297):314-324.
30
Cohen AD, Mateos MV, Cohen YC, et al. Efficacy and safety of cilta-cel in patients with progressive multiple myeloma after exposure to other BCMA-targeting agents[J]. Blood, 2023141(3):219-230.
31
Mi JQ, Zhao W, Jing H, et al. Phase Ⅱ,open-label study of ciltacabtagene autoleucel, an anti–B-cell maturation antigen chimeric antigen receptor-t-cell therapy, in Chinese patients with relapsed/refractory multiple myeloma (CAR-TIFAN-1) [J]. J Clin Oncol, 202341(6):1275-1284.
32
Holstein SA, Grant SJ, Wildes TM. Chimeric antigen receptor T-cell and bispecific antibody therapy in multiple myeloma: moving into the future[J]. J Clin Oncol, 202341(27):4416-4429.
33
Xu J, Melenhorst JJ. CT103A, a forward step in multiple myeloma immunotherapies[J]. Blood Sci, 20213(2):59-61.
34
Wang D, Wang J, Hu G, et al. A phase 1 study of a novel fully human BCMA-targeting CAR (CT103A) in patients with relapsed/refractory multiple myeloma[J]. Blood, 2021137(21):2890-2901.
35
Li CR, Wang D, Song YP, et al. CT103A, a novel fully human BCMA-targeting CAR-T cells, in patients with relapsed/refractory multiple myeloma: Updated results of phase 1b/2 study (FUMANBA-1)[J]. J Clin Oncol, 41(16 suppl): 8025
36
Oliver-Caldés A, González-Calle V, Cabañas V, et al. Fractionated initial infusion and booster dose of ARI0002h, a humanised, BCMA-directed CAR T-cell therapy, for patients with relapsed or refractory multiple myeloma (CAR-TBCMA-HCB-01): a single-arm, multicentre, academic pilot study[J]. Lancet Oncol, 202324(8):913-924.
37
Han X, Wang Y, Wei J, et al. Multi-antigen-targeted chimeric antigen receptor T cells for cancer therapy[J]. J Hematol Oncol. 201912(1):128.
38
Zah E, Nam E, Bhuvan V, et al. Systematically optimized BCMA/CS1 bispecific CAR-T cells robustly control heterogeneous multiple myeloma[J]. Nat Commun, 202011(1):2283.
39
Wang Y, Cao J, Gu W, et al. Long-term follow-up of combination of B-cell maturation antigen and CD19 chimeric antigen receptor T cells in multiple myeloma[J]. J Clin Oncol, 202240(20):2246-2256.
40
Mei H, Li C, Jiang H, et al. A bispecific CAR-T cell therapy targeting BCMA and CD38 in relapsed or refractory multiple myeloma[J]. J Hematol Oncol, 202114(1):161.
41
Smith EL, Harrington K, Staehr M, et al. GPRC5D is a target for the immunotherapy of multiple myeloma with rationally designed CAR T cells[J]. Sci Transl Med, 2019, 11(485): eaau7746.
42
Pillarisetti K, Edavettal S, Mendonça M, et al. A T-cell-redirecting bispecific G-protein-coupled receptor class 5 member D x CD3 antibody to treat multiple myeloma[J]. Blood, 2020, 135(15): 1232-1243.
43
Mailankody S, Devlin SM, Landa J, et al. GPRC5D-targeted CAR T cells for myeloma[J]. N Engl J Med, 2022387(13):1196-1206.
44
Xia J, Li H, Yan Z, et al. Anti-G protein-coupled receptor, class C group 5 member D chimeric antigen receptor T cells in patients with relapsed or refractory multiple myeloma: a single-arm, phase Ⅱ Trial[J]. J Clin Oncol, 202341(14):2583-2593.
45
Zhang M, Wei G, Zhou L, et al. GPRC5D CAR T cells (OriCAR-017) in patients with relapsed or refractory multiple myeloma (POLARIS): a first-in-human, single-centre, single-arm, phase 1 trial[J]. Lancet Haematol, 202310(2): e107-e116.
46
Li J, Stagg NJ, Johnston J, et al. Membrane-proximal epitope facilitates efficient T cell synapse formation by anti-FcRH5/CD3 and is a requirement for myeloma cell killing[J]. Cancer Cell, 201731(3):383-395.
47
Jiang D, Huang H, Qin H, et al. Chimeric antigen receptor T cells targeting FcRH5 provide robust tumour-specific responses in murine xenograft models of multiple myeloma[J]. Nat Commun, 202314(1):3642.
48
Cappell KM, Kochenderfer JN. Long-term outcomes following CAR T cell therapy: what we know so far[J]. Nat Rev Clin Oncol, 202320(6):359-371.
49
Strassl I, Schreder M, Steiner N, et al. The agony of choice-where to place the wave of BCMA-targeted therapies in the multiple myeloma treatment puzzle in 2022 and beyond[J]. Cancers (Basel), 202113(18):4701.
50
Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies[J]. Blood Cancer J, 202111(4):69.
51
Brudno JN, Kochenderfer JN. Recent advances in CAR T-cell toxicity: mechanisms, manifestations and management[J]. Blood Rev, 201934:45-55.
52
Da Vià MC, Dietrich O, Truger M, et al. Homozygous BCMA gene deletion in response to anti-BCMA CAR T cells in a patient with multiple myeloma[J]. Nat Med, 2021, 27(4): 616-619.
53
Wong DP, Roy NK, Zhang K, et al. A BAFF ligand-based CAR-T cell targeting three receptors and multiple B cell cancers[J]. Nat Commun, 202213(1):217.
54
Xie B, Li Z, Zhou J, et al. Current status and perspectives of dual-targeting chimeric antigen receptor T-cell therapy for the treatment of hematological malignancies[J]. Cancers (Basel)2022, 14(13): 3230.
55
Choi BD, Yu X, Castano AP, et al. CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity[J]. Nat Biotechnol, 201937(9):1049-1058.
56
Tousley AM, Rotiroti MC, Labanieh L, et al. Co-opting signalling molecules enables logic-gated control of CAR T cells[J]. Nature, 2023615(7952):507-516.
57
Li W, Zhang B, Cao W, et al. Identification of potential resistance mechanisms and therapeutic targets for the relapse of BCMA CAR-T therapy in relapsed/refractory multiple myeloma through single-cell sequencing[J]. Exp Hematol Oncol, 202312(1):44.
58
Pietrobon V, Todd LA, Goswami A, et al. Improving CAR T-cell persistence[J]. Int J Mol Sci, 2021, 22(19):10828.
59
Wu L, Brzostek J, Sakthi Vale PD, et al. CD28-CAR-T cell activation through FYN kinase signaling rather than LCK enhances therapeutic performance[J]. Cell Rep Med, 20234(2):100917.
60
Roddie C, O′Reilly M, Dias Alves Pinto J, et al. Manufacturing chimeric antigen receptor T cells: issues and challenges[J]. Cytotherapy, 201921(3):327-340.
61
Li X, Dai H, Li X, et al. Optimal model establishment of whole-process management data for CAR-T therapy in China-how should this be done?[J]. Cell Mol Immunol, 202219(1):122-124.
62
Levine BL, Miskin J, Wonnacott K, et al. Global manufacturing of CAR T cell therapy[J]. Mol Ther Methods Clin Dev, 20164:92-101.
63
Tyagarajan S, Spencer T, Smith J. Optimizing CAR-T cell manufacturing processes during pivotal clinical trials[J]. Mol Ther Methods Clin Dev, 2019, 16:136-144.
64
Smith TT, Stephan SB, Moffett HF, et al. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers[J]. Nat Nanotechnol, 201712(8):813-820.
65
Ghassemi S, Durgin JS, Nunez-Cruz S, et al. Rapid manufacturing of non-activated potent CAR T cells[J]. Nat Biomed Eng, 2022, 6(2):118-128.
66
Wong DP, Roy NK, Zhang K, et al. A BAFF ligand-based CAR-T cell targeting three receptors and multiple B cell cancers[J]. Nat Commun, 2022, 13(1):217.
67
Rurik JG, Tombácz I, Yadegari A, et al. CAR T cells produced in vivo to treat cardiac injury [J] Science, 2022375(6576):91-96.
68
Zhang J, Hu Y, Yang J, et al. Non-viral, specifically targeted CAR-T cells achieve high safety and efficacy in B-NHL[J]. Nature, 2022, 609(7926):369-374.
69
Agarwalla P, Ogunnaike EA, Ahn S, et al. Bioinstructive implantable scaffolds for rapid in vivo manufacture and release of CAR-T cells[J]. Nat Biotechnol, 202240(8):1250-1258.
70
Zhang DKY, Adu-Berchie K, Iyer S, et al. Enhancing CAR-T cell functionality in a patient-specific manner[J]. Nat Commun, 2023, 14(1):506.
71
Wu JF, Dhakal B. BCMA-targeted CAR-T cell therapies in relapsed and/or refractory multiple myeloma: latest updates from 2023 ASCO Annual Meeting[J]. J Hematol Oncol, 2023, 16(1):86.
72
Muthuvel M, Srinivasan H, Louis L, et al. Engineering off-the-shelf universal CAR T cells: a silver lining in the cloud[J]. Cytokine, 2022156:155920.
73
Mailankody S, Matous JV, Chhabra S, et al. Allogeneic BCMA-targeting CAR T cells in relapsed/refractory multiple myeloma: phase 1 UNIVERSAL trial interim results[J]. Nat Med2023, 29(2):422-429.
[1] 陈慧, 姚静, 张宁, 刘磊, 马秀玲, 王小贤, 方爱娟, 管静静. 超声心动图在多发性骨髓瘤心脏淀粉样变中的诊断价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(10): 943-949.
[2] 宋勇, 李东炫, 王翔, 李锐. 基于数据挖掘法分析3 种超声造影剂不良反应信号[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 890-898.
[3] 季思涵, 唐新宇, 王邦杰, 狄汶洋, 王佳鸣, 查小明, 谢晖, 周文斌, 潘红, 王水. 阿贝西利在激素受体阳性、HER-2 阴性乳腺癌患者中的安全性研究[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(05): 281-286.
[4] 陈桂华, 钟小玲, 谢雨, 王慧, 谢江, 杨涛毅. 合并肝脏疾病特殊健康状态儿童疫苗预防接种及时性临床分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(04): 431-439.
[5] 李倩, 刘倩, 朱海玲, 倪娟, 任宝芹, 刘长云. 重组人生长激素治疗特发性矮小症患儿的疗效[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(03): 346-352.
[6] 许月芳, 刘旺, 曾妙甜, 郭宇姝. 多粘菌素B和多粘菌素E治疗外科多重耐药菌感染临床疗效及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 700-703.
[7] 何岩, 向文采. 七氟醚与异丙酚联合氯胺酮麻醉在疝修补术中的镇静镇痛效果及安全性[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(05): 566-569.
[8] 袁广琴, 朱珠, 林云霞. 胸腺肽联合无创正压通气救治AECOPD并发Ⅱ型呼吸衰竭患者的临床分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 438-441.
[9] 陈伟杰, 何小东. 胆囊癌免疫靶向治疗进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 763-768.
[10] 赵磊, 刘文志, 林峰, 于剑, 孙铭骏, 崔佑刚, 张旭, 衣宇鹏, 于宝胜, 冯宁. 深部热疗在改善结直肠癌术后辅助化疗副反应及生活质量中的作用研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 488-493.
[11] 高静, 夏婷婷. 血清乳酸脱氢酶、中性粒细胞/淋巴细胞比值、血浆纤维蛋白原/前白蛋白比值对晚期结直肠癌患者姑息化疗效果与不良反应的评价[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(03): 203-207.
[12] 葛雪梅. SOX与mFOLFOX6化疗方案对晚期胃癌的疗效与安全性[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(01): 67-71.
[13] 林文君. 3例超剂量使用阿莫西林-克拉维酸钾后尿液结晶的分析[J/OL]. 中华临床实验室管理电子杂志, 2024, 12(01): 48-51.
[14] 李忠清, 罗军. 尿蛋白电泳在浆细胞疾病鉴别诊断中的价值[J/OL]. 中华诊断学电子杂志, 2024, 12(04): 217-221.
[15] 陆天, 孙道萍. 调节性B细胞在多发性骨髓瘤中的研究进展[J/OL]. 中华诊断学电子杂志, 2024, 12(02): 133-137.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?