切换至 "中华医学电子期刊资源库"

中华移植杂志(电子版) ›› 2023, Vol. 17 ›› Issue (05) : 308 -312. doi: 10.3877/cma.j.issn.1674-3903.2023.05.009

综述

NLRP3炎性小体在器官移植不良反应发病机制中的研究进展
季媛, 魏巴金()   
  1. 330000 南昌,江西省肿瘤医院手术室
    310003 杭州,浙江大学医学院附属第一医院卫健委多器官联合移植研究重点实验室
  • 收稿日期:2023-06-15 出版日期:2023-10-25
  • 通信作者: 魏巴金
  • 基金资助:
    江西省卫生健康委科技计划项目(202211007)

Review of research progress on the role of NLRP3 inflammasome in the pathogenesis of adverse reactions of organ transplantation

Yuan Ji, Bajin Wei()   

  1. Operating Room, Jiangxi Cancer Hospital, Nanchang 330000, China
    Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
  • Received:2023-06-15 Published:2023-10-25
  • Corresponding author: Bajin Wei
引用本文:

季媛, 魏巴金. NLRP3炎性小体在器官移植不良反应发病机制中的研究进展[J/OL]. 中华移植杂志(电子版), 2023, 17(05): 308-312.

Yuan Ji, Bajin Wei. Review of research progress on the role of NLRP3 inflammasome in the pathogenesis of adverse reactions of organ transplantation[J/OL]. Chinese Journal of Transplantation(Electronic Edition), 2023, 17(05): 308-312.

器官移植会产生诸多与炎症相关的不良反应。NLRP3是固有免疫系统中调控炎症反应的重要分子,在肝、肾等器官移植术后发生的缺血再灌注损伤、排斥反应以及微生物感染等不良反应中发挥重要功能。本文对NLRP3在器官移植不良反应发病机制中的作用及调控方式等最新研究进展进行综述。

Organ transplantation will lead to some adverse events related to inflammation. NLRP3 inflammasome is an important molecule in the innate immune system that regulates inflammatory responses, NLRP3 plays a key role in adverse events such as ischemia-reperfusion injury, rejection, and microbial infection caused by liver, kidney and other organ transplants. Therefore, this article will review the latest research progress on the pathogenesis and signal pathways of NLRP3 regulation involved in transplantation.

1
Cunningham KT, Mills KHG. Trained innate immunity in hematopoietic stem cell and solid organ transplantation[J]. Transplantation, 2021, 105(8):1666-1676.
2
Mak ML, Reid KT, Crome SQ. Protective and pathogenic functions of innate lymphoid cells in transplantation[J]. Clin Exp Immunol, 2023, 213(1): 23-39.
3
Duneton C, Winterberg PD, Ford ML. Activation and regulation of alloreactive T cell immunity in solid organ transplantation[J]. Nat Rev Nephrol, 2022, 18(10):663-676.
4
Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling[J]. Nat Rev Immunol, 2016, 16(7):407-420.
5
Lu A, Magupalli VG, Ruan J, et al. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes[J]. Cell, 2014, 156(6):1193-1206.
6
Willingham SB, Allen IC, Bergstralh DT, et al. NLRP3 (NALP3, Cryopyrin) facilitates in vivo caspase-1 activation, necrosis, and HMGB1 release via inflammasome-dependent and -independent pathways[J]. J Immunol, 2009, 183(3):2008-2015.
7
Mangan MSJ, Olhava EJ, Roush WR, et al. Targeting the NLRP3 inflammasome in inflammatory diseases[J]. Nat Rev Drug Discov, 2018, 17(8):588-606.
8
Liston A, Masters SL. Homeostasis-altering molecular processes as mechanisms of inflammasome activation[J]. Nat Rev Immunol, 2017, 17(3):208-214.
9
Yu Y, Cheng Y, Pan Q, et al. Effect of the selective NLRP3 inflammasome inhibitor mcc950 on transplantation outcome in a pig liver transplantation model with organs from donors after circulatory death preserved by hypothermic machine perfusion[J]. Transplantation, 2019, 103(2): 353-362.
10
Xu KY, Tong S, Wu CY, et al. Nlrp3 inflammasome inhibitor MCC950 ameliorates obliterative bronchiolitis by inhibiting Th1/Th17 response and promoting treg response after orthotopic tracheal transplantation in mice[J]. Transplantation, 2020, 104(6): e151-e163.
11
Afonina IS, Zhong Z, Karin M, et al. Limiting inflammation-the negative regulation of NF-kappaB and the NLRP3 inflammasome[J]. Nat Immunol, 2017, 18(8):861-869.
12
Alyaseer AAA, de Lima MHS, Braga TT. The role of NLRP3 inflammasome activation in the epithelial to mesenchymal transition process during the fibrosis[J]. Front Immunol, 2020, 11:883.
13
Kayagaki N, Warming S, Lamkanfi M, et al. Non-canonical inflammasome activation targets caspase-11[J]. Nature, 2011, 479(7371):117-121.
14
Ding J, Wang K, Liu W, et al. Pore-forming activity and structural autoinhibition of the gasdermin family[J]. Nature, 2016, 535(7610):111-116.
15
Komada T, Muruve DA. The role of inflammasomes in kidney disease[J]. Nat Rev Nephrol, 2019, 15(8):501-520.
16
Gaidt MM, Ebert TS, Chauhan D, et al. Human monocytes engage an alternative inflammasome pathway[J]. Immunity, 2016, 44(4): 833-846.
17
Yang Y, Wang H, Kouadir M, et al. Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors[J]. Cell Death Dis, 2019, 10(2):128.
18
Rühl S, Broz P. Caspase-11 activates a canonical NLRP3 inflammasome by promoting K(+) efflux[J]. Eur J Immunol, 2015, 45(10):2927-2936.
19
Muñoz-Planillo R, Kuffa P, Martínez-Colón G, et al. K(+) efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter[J]. Immunity, 2013, 38(6):1142-1153.
20
Tang T, Lang X, Xu C, et al. CLICs-dependent chloride efflux is an essential and proximal upstream event for NLRP3 inflammasome activation[J]. Nat Commun, 2017, 8(1):202.
21
Campden RI, Zhang Y. The role of lysosomal cysteine cathepsins in NLRP3 inflammasome activation[J]. Arch Biochem Biophys, 2019, 670:32-42.
22
Zhong Z, Liang S, Sanchez-Lopez E, et al. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation[J]. Nature, 2018, 560(7717):198-203.
23
Zhou R, Yazdi AS, Menu P, et al. A role for mitochondria in NLRP3 inflammasome activation[J]. Nature, 2011, 469(7329):221-225.
24
Andrade-Oliveira V, Foresto-Neto O, Watanabe IKM, et al. Inflammation in renal diseases: new and old players[J]. Front Pharmacol, 2019, 10:1192.
25
Turner CM, Arulkumaran N, Singer M, et al. Is the inflammasome a potential therapeutic target in renal disease?[J]. BMC Nephrol, 2014, 15:21.
26
Toki Y, Takenouchi T, Harada H, et al. Extracellular ATP induces P2X7 receptor activation in mouse Kupffer cells, leading to release of IL-1beta, HMGB1, and PGE2, decreased MHC class I expression and necrotic cell death[J]. Biochem Biophys Res Commun, 2015, 458(4):771-776.
27
Minutoli L, Puzzolo D, Rinaldi M, et al. ROS-mediated NLRP3 inflammasome activation in brain, heart, kidney, and testis ischemia/reperfusion injury[J]. Oxid Med Cell Longev, 2016: 2183026.
28
Mauerhofer C, Grumet L, Schemmer P, et al. Combating ischemia-reperfusion injury with micronutrients and natural compounds during solid organ transplantation: data of clinical trials and lessons of preclinical findings[J]. Int J Mol Sci, 2021, 22(19): 10675.
29
Zheng D, Liwinski T, Elinav E. Inflammasome activation and regulation: toward a better understanding of complex mechanisms[J]. Cell Discov, 2020, 6:36.
30
Furuichi K, Wada T, Iwata Y, et al. Interleukin-1-dependent sequential chemokine expression and inflammatory cell infiltration in ischemia-reperfusion injury[J]. Crit Care Med, 2006, 34(9): 2447-2455.
31
Su Y, Wang Y, Liu M, et al. Hydrogen sulfide attenuates renal I/R-induced activation of the inflammatory response and apoptosis via regulating Nrf2-mediated NLRP3 signaling pathway inhibition[J]. Mol Med Rep, 2021, 24(1):518.
32
Jiménez-Castro MB, Cornide-Petronio ME, Gracia-Sancho J, et al. Inflammasome-mediated inflammation in liver ischemia-reperfusion injury[J]. Cells, 2019, 8(10): 1131.
33
Kan C, Ungelenk L, Lupp A, et al. Ischemia-reperfusion injury in aged livers-the energy metabolism, inflammatory response, and autophagy[J]. Transplantation, 2018, 102(3):368-377.
34
Zhong W, Rao Z, Rao J, et al. Aging aggravated liver ischemia and reperfusion injury by promoting STING-mediated NLRP3 activation in macrophages[J]. Aging Cell, 2020, 19(8):e13186.
35
Li N, Zhou H, Wu H, et al. STING-IRF3 contributes to lipopolysaccharide-induced cardiac dysfunction, inflammation, apoptosis and pyroptosis by activating NLRP3[J]. Redox Biol, 2019, 24: 101215.
36
Ronca V, Wootton G, Milani C, et al. The immunological basis of liver allograft rejection[J]. Front Immunol, 2020, 11:2155.
37
Dessing MC, Kers J, Damman J, et al. Donor and recipient genetic variants in NLRP3 associate with early acute rejection following kidney transplantation[J]. Sci Rep, 2016, 6:36315.
38
Wanderer AA. Rationale and timeliness for IL-1beta-targeted therapy to reduce allogeneic organ injury at procurement and to diminish risk of rejection after transplantation[J]. Clin Transplant, 2010, 24(3):307-311.
39
Hong BJ, Liu H, Wang ZH, et al. Inflammasome activation involved in early inflammation reaction after liver transplantation[J]. Immunol Lett, 2017, 190:265-271.
40
Amores-Iniesta J, Barberà-Cremades M, Martínez CM, et al. Extracellular ATP activates the NLRP3 inflammasome and is an early danger signal of skin allograft rejection[J]. Cell Rep, 2017, 21(12):3414-3426.
41
Wei C, Ma L, Chi H, et al. The NLRP3 inflammasome regulates corneal allograft rejection through enhanced phosphorylation of STAT3[J]. Am J Transplant, 2020, 20(12):3354-3366.
42
Yoshino O, Wong BKL, Cox DRA, et al. Elevated levels of circulating mitochondrial DNA predict early allograft dysfunction in patients following liver transplantation[J]. J Gastroenterol Hepatol, 2021, 36(12):3500-3507.
43
Lee DD, Croome KP, Shalev JA, et al. Early allograft dysfunction after liver transplantation: an intermediate outcome measure for targeted improvements[J]. Ann Hepatol, 2016, 15(1):53-60.
44
Costa TJ, Potje SR, Fraga-Silva TFC, et al. Mitochondrial DNA and TLR9 activation contribute to SARS-CoV-2-induced endothelial cell damage[J]. Vascul Pharmacol, 2022, 142:106946.
45
Shen J, Dai Z, Li Y, et al. TLR9 regulates NLRP3 inflammasome activation via the NF-kB signaling pathway in diabetic nephropathy[J]. Diabetol Metab Syndr, 2022, 14(1):26.
46
Martínez-García JJ, Martínez-Banaclocha H, Angosto-Bazarra D, et al. P2X7 receptor induces mitochondrial failure in monocytes and compromises NLRP3 inflammasome activation during sepsis[J]. Nat Commun, 2019, 10(1): 2711.
47
Hu X, Zhang H, Zhang Q, et al. Emerging role of STING signalling in CNS injury: inflammation, autophagy, necroptosis, ferroptosis and pyroptosis[J]. J Neuroinflammation, 2022, 19(1):242.
48
Gaidt MM, Ebert TS, Chauhan D, et al. The DNA inflammasome in human myeloid cells is initiated by a STING-cell death program upstream of NLRP3[J]. Cell, 2017, 171(5):1110-1124.e18.
49
Coll RC. Role reversal: adaptive immunity instructs inflammasome activation for anti-viral defence[J]. EMBO J, 2019, 38(21):e103533.
50
Wang Q, Bu Q, Liu M, et al. XBP1-mediated activation of the STING signalling pathway in macrophages contributes to liver fibrosis progression[J]. JHEP Rep, 2022, 4(11): 100555.
51
Kawashima M, Juvet SC. The role of innate immunity in the long-term outcome of lung transplantation[J]. Ann Transl Med, 2020, 8(6):412.
52
Bernasconi E, Pattaroni C, Koutsokera A, et al. Airway microbiota determines innate cell inflammatory or tissue remodeling profiles in lung transplantation[J]. Am J Respir Crit Care Med, 2016, 194(10): 1252-1263.
53
Gugliandolo E, Fusco R, Ginestra G, et al. Involvement of TLR4 and PPAR-alpha receptors in host response and NLRP3 inflammasome activation, against pulmonary infection with pseudomonas aeruginosa[J]. Shock, 2019, 51(2):221-227.
54
D′Amico R, Fusco R, Cordaro M, et al., Modulation of NLRP3 inflammasome through formyl peptide receptor 1 (Fpr-1) pathway as a new therapeutic target in bronchiolitis obliterans syndrome[J]. Int J Mol Sci, 2020, 21(6):2144.
[1] 宋勇, 李东炫, 王翔, 李锐. 基于数据挖掘法分析3 种超声造影剂不良反应信号[J/OL]. 中华医学超声杂志(电子版), 2024, 21(09): 890-898.
[2] 周容, 张亚萍, 廖宇, 程晓萍, 管玉龙, 潘广玉, 闫杰, 王贤芝, 苟中山, 潘登科, 李巅远. 超声在基因编辑猪-猴异种并联式心脏移植术中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 617-623.
[3] 许月芳, 刘旺, 曾妙甜, 郭宇姝. 多粘菌素B和多粘菌素E治疗外科多重耐药菌感染临床疗效及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 700-703.
[4] 邹永康, 石雍, 徐贤刚, 张帅民, 刘衍, 杨生鹏, 叶啟发, 陈根, 张毅. 肾移植术后手术切口米根霉感染伴菌血症一例并文献复习[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 289-292.
[5] 仲福顺, 余露, 范晓礼, 叶啟发. 肝移植治疗肝上皮样血管内皮瘤一例[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 293-297.
[6] 刘冉佳, 崔向丽, 周效竹, 曲伟, 朱志军. 儿童肝移植受者健康相关生存质量评价的荟萃分析[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 302-309.
[7] 贺健, 张骊, 王洪海, 蒋文涛. 肝移植术后脾功能亢进转归及治疗研究进展[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 310-314.
[8] 郭倩男, 史嘉玮, 董念国. T细胞不同代谢方式在移植排斥反应中的研究进展[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 315-320.
[9] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[10] 傅斌生, 冯啸, 杨卿, 曾凯宁, 姚嘉, 唐晖, 刘剑戎, 魏绪霞, 易慧敏, 易述红, 陈规划, 杨扬. 脂肪变性供肝在成人劈离式肝移植中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 789-794.
[11] 魏志鸿, 刘建勇, 吴小雅, 杨芳, 吕立志, 江艺, 蔡秋程. 肝移植术后急性移植物抗宿主病的诊治(附四例报告)[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 846-851.
[12] 中华医学会器官移植学分会. 肝移植术后缺血性胆道病变诊断与治疗中国实践指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 739-748.
[13] 中华医学会器官移植学分会, 中华医学会外科学分会外科手术学学组, 中华医学会外科学分会移植学组, 华南劈离式肝移植联盟. 劈离式供肝儿童肝移植中国临床操作指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 593-601.
[14] 刘军, 丘文静, 孙方昊, 李松盈, 易述红, 傅斌生, 杨扬, 罗慧. 在体与离体劈离式肝移植在儿童肝移植中的应用比较[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 688-693.
[15] 赵磊, 刘文志, 林峰, 于剑, 孙铭骏, 崔佑刚, 张旭, 衣宇鹏, 于宝胜, 冯宁. 深部热疗在改善结直肠癌术后辅助化疗副反应及生活质量中的作用研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(06): 488-493.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?