切换至 "中华医学电子期刊资源库"

中华移植杂志(电子版) ›› 2023, Vol. 17 ›› Issue (05) : 303 -307. doi: 10.3877/cma.j.issn.1674-3903.2023.05.008

综述

肠道微生态与肝移植围手术期并发症相关研究进展
汤鹏昊, 张武()   
  1. 310053 杭州,浙江中医药大学研究生院
    310015 树兰(杭州)医院肝胆胰外科
  • 收稿日期:2023-07-28 出版日期:2023-10-25
  • 通信作者: 张武
  • 基金资助:
    济南微生态生物医学省实验室(JNL-2022015B)

Progress in mechanism research about intestinal microecology with perioperative complications of liver transplantation

Penghao Tang, Wu Zhang()   

  1. Graduate School of Zhejiang Chinese Medical University, Hangzhou 310053, China
    Hepatobiliary and Pancreatic Surgery Department of Shulan (Hangzhou) Hospital, Hangzhou 310015, China
  • Received:2023-07-28 Published:2023-10-25
  • Corresponding author: Wu Zhang
引用本文:

汤鹏昊, 张武. 肠道微生态与肝移植围手术期并发症相关研究进展[J]. 中华移植杂志(电子版), 2023, 17(05): 303-307.

Penghao Tang, Wu Zhang. Progress in mechanism research about intestinal microecology with perioperative complications of liver transplantation[J]. Chinese Journal of Transplantation(Electronic Edition), 2023, 17(05): 303-307.

肝脏与肠道能够通过肠肝轴进行双向影响。正常人体的肠道屏障可以限制肠源性细菌及大分子抗原和内毒素的滤过。对于接受肝移植的受者而言,供肝缺血再灌注损伤以及移植肝早期功能不全,将削弱胆汁酸对肠道菌群的抑制能力。肠道淤血导致炎症因子聚集,产生大量氧自由基,破坏肠道屏障并促使肠道菌群经肠肝轴移位。肠道微生态失衡会对供肝产生多方面影响,并增加肝移植围手术期感染、急性排斥反应和胆道并发症的发生风险。通过进一步探索肠道微生态影响肝移植围手术期并发症的新机制,及时发现并干预并发症的发生发展,将有效降低肝移植受者围手术期病死率,改善长期预后。

The liver and gut can have bidirectional effects through the gut-liver axis. The gut barrier in a normal human can limit the filtration of gut bacteria, macromolecular antigens, and endotoxins. However, for liver transplantation recipients, ischemia-reperfusion injury and early functional impairment of the donor liver will weaken the inhibition of bile acids on gut microbiota. Gut congestion can cause the accumulation of inflammatory factors, produce a large amount of oxygen free radicals, disrupt the gut barrier, and promote the translocation of gut microbiota through the gut liver axis. The imbalance of gut microbiota can have multiple impacts on the donor liver and increase the risk of perioperative infection, acute rejection, and biliary complications. In the future, by further exploring the new mechanisms of the impact of gut microbiota on perioperative complications of liver transplantation, detection and intervention of the occurrence and development of complications, we will effectively reduce the perioperative mortality rate of patients, improve long-term prognosis, and bring positive effects to the development of liver transplantation.

1
Wang R, Tang R, Li B, et al. Gut microbiome, liver immunology, and liver diseases[J]. Cell Mol Immunol, 2021, 18(1): 4-17.
2
Milosevic I, Vujovic A, Barac A, et al. Gut-liver axis, gut microbiota, and its modulation in the management of liver diseases: a review of the literature[J]. Int J Mol Sci, 2019, 20(2): 395.
3
Gomaa EZ. Human gut microbiota/microbiome in health and diseases: a review[J]. Antonie Van Leeuwenhoek, 2020, 113(12): 2019-2040.
4
Albillos A, de Gottardi A, Rescigno M. The gut-liver axis in liver disease: pathophysiological basis for therapy[J]. J Hepatol, 2020, 72(3): 558-577.
5
Albhaisi SAM, Bajaj JS, Sanyal AJ. Role of gut microbiota in liver disease[J]. Am J Physiol Gastrointest Liver Physiol, 2020, 318(1): G84-G98.
6
Boeri L, Izzo L, Sardelli L, et al. Advanced organ-on-a-chip devices to investigate liver multi-organ communication: focus on gut, microbiota and brain[J]. Bioengineering (Basel), 2019, 6(4): 91.
7
Suzuki T. Regulation of the intestinal barrier by nutrients: the role of tight junctions[J]. Anim Sci J, 2020, 91(1): e13357.
8
Chen Y, Cui W, Li X, et al. Interaction between commensal bacteria, immune response and the intestinal barrier in inflammatory bowel disease[J]. Front Immunol, 202112:761981.
9
Yang M, Gu Y, Li L, et al. Bile acid-gut microbiota axis in inflammatory bowel disease: from bench to bedside[J]. Nutrients, 2021, 13(9): 3143.
10
DiMarzio M, Rusconi B, Yennawar NH, et al. Identification of a mouse Lactobacillus johnsonii strain with deconjugase activity against the FXR antagonist T-β-MCA[J]. PLoS One, 2017, 12(9): e0183564.
11
于爽,顾志敏,樊亚东,等. 胆汁酸免疫调节作用及其与肠道、肝脏炎症性疾病相关性的研究进展[J]. 中国免疫学杂志2022, 38(16): 2031-2036.
12
Xu Z, Jiang N, Xiao Y, et al. The role of gut microbiota in liver regeneration[J]. Front Immunol, 2022, 13:1003376.
13
Wang H, Xi Z, Deng L, et al. Macrophage polarization and liver ischemia-reperfusion injury[J]. Int J Med Sci, 2021, 18(5): 1104-1113.
14
Deng F, Lin ZB, Sun QS, et al. The role of intestinal microbiota and its metabolites in intestinal and extraintestinal organ injury induced by intestinal ischemia reperfusion injury[J]. Int J Biol Sci, 2022, 18(10): 3981-3992.
15
Kato K, Nagao M, Miyamoto K, et al. Longitudinal analysis of the intestinal microbiota in liver transplantation[J]. Transplant Direct, 2017, 3(4):e144.
16
Hu J, Deng F, Zhao B, et al. Lactobacillus murinus alleviate intestinal ischemia/reperfusion injury through promoting the release of interleukin-10 from M2 macrophages via Toll-like receptor 2 signaling[J]. Microbiome, 2022, 10(1):38.
17
El-Bendary M, Naemattalah M, Yassen A, et al. Interrelationship between Toll-like receptors and infection after orthotopic liver transplantation[J]. World J Transplant, 2020, 10(6): 162-172.
18
Rueter C, Bielaszewska M. Secretion and delivery of intestinal pathogenic Escherichia coli virulence factors via outer membrane vesicles[J]. Front Cell Infect Microbiol, 2020, 10: 91.
19
Wu H, Xie S, Miao J, et al. Lactobacillus reuteri maintains intestinal epithelial regeneration and repairs damaged intestinal mucosa[J]. Gut Microbes, 2020, 11(4): 997-1014.
20
Kahn J, Pregartner G, Schemmer P. Effects of both pro- and synbiotics in liver surgery and transplantation with special focus on the gut-liver axis-a systematic review and Meta-analysis[J]. Nutrients, 2020, 12(8): 2461.
21
Kirkpatrick CL, Parsley NC, Bartges TE, et al. Exploring bioactive peptides from bacterial secretomes using PepSAVI-MS: identification and characterization of Bac-21 from Enterococcus faecalis pPD1[J]. Microb Biotechnol, 2018, 11(5): 943-951.
22
Ronca V, Wootton G, Milani C, et al. The immunological basis of liver allograft rejection[J]. Front Immunol, 2020, 11: 2155.
23
Liu Y, Pu X, Qin X, et al. Neutrophil extracellular traps regulate HMGB1 translocation and kupffer cell M1 polarization during acute liver transplantation rejection[J]. Front Immunol, 2022, 13: 823511.
24
Ren Z, Jiang J, Lu H, et al. Intestinal microbial variation may predict early acute rejection after liver transplantation in rats[J]. Transplantation, 2014, 98(8): 844-852.
25
Lee SK, Jhun JY, Lee SY, et al. A decrease in functional microbiomes represented as Faecalibacterium affects immune homeostasis in long-term stable liver transplant patients[J]. Gut Microbes, 2022, 14(1): 2102885.
26
Nemes B, Gámán G, Doros A. Biliary complications after liver transplantation[J]. Expert Rev Gastroenterol Hepatol, 2015, 9(4): 447-466.
27
Wang SF, Huang ZY, Chen XP. Biliary complications after living donor liver transplantation[J]. Liver Transpl, 2011, 17(10): 1127-1136.
28
Zuhair M, Smit GSA, Wallis G, et al. Estimation of the worldwide seroprevalence of cytomegalovirus: a systematic review and meta-analysis[J]. Rev Med Virol, 2019, 29(3): e2034.
29
Griffiths P, Reeves M. Pathogenesis of human cytomegalovirus in the immunocompromised host[J]. Nat Rev Microbiol, 2021, 19(12): 759-773.
30
Le-Trilling VTK, Ebel JF, Baier F, et al. Acute cytomegalovirus infection modulates the intestinal microbiota and targets intestinal epithelial cells[J]. Eur J Immunol, 2023, 53(2): e2249940.
31
Georges P, Clerc C, Turco C, et al. Post-transplantation cytomegalovirus infection interplays with the development of anastomotic biliary strictures after liver transplantation[J]. Transpl Int, 2022, 35: 10292.
32
Makino K, Ishii T, Yoh T, et al. The usefulness of preoperative bile cultures for hepatectomy with biliary reconstruction[J]. Heliyon, 2022, 8(12): e12226.
33
Wong HJ, Lim WH, Ng CH, et al. Predictive and prognostic roles of gut microbial variation in liver transplant[J]. Front Med, 2022, 9: 873523.
34
Ma HD, Zhao ZB, Ma WT, et al. Gut microbiota translocation promotes autoimmune cholangitis[J]. J Autoimmun, 2018, 95: 47-57.
35
邬兴炳. 围手术期肠道微生态干预在肝移植术后腹腔感染防治中的应用[D]. 浙江:宁波大学,2019.
36
Chen Y, Tsai YH, Tseng BJ, et al. Influence of growth hormone and glutamine on intestinal stem cells: a narrative review[J]. Nutrients, 2019, 11(8): 1941.
[1] . 肝移植治疗终末期肝病[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 1-.
[2] 李坤河, 寇萌佳, 邝立挺. 肝移植术后二次气管插管的危险因素及预测模型的建立[J]. 中华普通外科学文献(电子版), 2023, 17(05): 366-371.
[3] 中华医学会器官移植学分会, 中国医师协会器官移植医师分会, 上海医药行业协会. 中国肝、肾移植受者霉酚酸类药物应用专家共识(2023版)[J]. 中华移植杂志(电子版), 2023, 17(05): 257-272.
[4] 陆闻青, 陈昕怡, 任雪飞. 遗传代谢病儿童肝移植受者术后生活质量调查研究[J]. 中华移植杂志(电子版), 2023, 17(05): 287-292.
[5] 范铁艳, 李君, 陈虹. 肝移植术后新发戊型病毒性肝炎的诊治经验[J]. 中华移植杂志(电子版), 2023, 17(05): 293-296.
[6] 陈朔, 陈峰, 程飞, 项捷. 糖原累积病Ⅰ型并发胰腺炎肝移植术后胰腺梗死一例[J]. 中华移植杂志(电子版), 2023, 17(05): 300-302.
[7] 中国器官移植发展基金会器官移植受者健康管理专家委员会, 中国医师协会器官移植医师分会, 中华医学会器官移植学分会, 国家肝脏移植质控中心. 肝移植受者雷帕霉素靶蛋白抑制剂临床应用中国专家共识(2023版)[J]. 中华移植杂志(电子版), 2023, 17(04): 193-204.
[8] 祝丽娜, 杨子祯, 张迪, 张勇, 蔡金贞, 王建红. 超声造影在肝移植术后肝动脉并发症中的应用价值[J]. 中华移植杂志(电子版), 2023, 17(04): 240-245.
[9] 徐烨, 李婧, 刘冉佳, 潘晨, 郭明星, 崔向丽. 2017至2021年中国95家医疗机构肝移植术后免疫抑制剂用药分析[J]. 中华移植杂志(电子版), 2023, 17(03): 134-139.
[10] 严庆, 刘颖, 邓斐文, 陈焕伟. 微血管侵犯对肝癌肝移植患者生存预后的影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 624-629.
[11] 廖梅, 张红君, 金洁玚, 吕艳, 任杰. 床旁超声造影对肝移植术后早期肝动脉血栓的诊断价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 630-634.
[12] 李秉林, 吕少诚, 潘飞, 姜涛, 樊华, 寇建涛, 贺强, 郎韧. 供肝灌注液病原菌与肝移植术后早期感染的相关性分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 656-660.
[13] 吕垒, 冯啸, 何凯明, 曾凯宁, 杨卿, 吕海金, 易慧敏, 易述红, 杨扬, 傅斌生. 改良金氏评分在儿童肝豆状核变性急性肝衰竭肝移植手术时机评估中价值并文献复习[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 661-668.
[14] 王孟龙. 肿瘤生物学特征在肝癌肝移植治疗中的意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 490-494.
[15] 王晓东, 汪恺, 葛昭, 丁忠祥, 徐骁. 计算机视觉技术在肝癌肝移植疗效提升中的研究进展[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 361-366.
阅读次数
全文


摘要