切换至 "中华医学电子期刊资源库"

中华移植杂志(电子版) ›› 2023, Vol. 17 ›› Issue (05) : 303 -307. doi: 10.3877/cma.j.issn.1674-3903.2023.05.008

综述

肠道微生态与肝移植围手术期并发症相关研究进展
汤鹏昊, 张武()   
  1. 310053 杭州,浙江中医药大学研究生院
    310015 树兰(杭州)医院肝胆胰外科
  • 收稿日期:2023-07-28 出版日期:2023-10-25
  • 通信作者: 张武
  • 基金资助:
    济南微生态生物医学省实验室(JNL-2022015B)

Progress in mechanism research about intestinal microecology with perioperative complications of liver transplantation

Penghao Tang, Wu Zhang()   

  1. Graduate School of Zhejiang Chinese Medical University, Hangzhou 310053, China
    Hepatobiliary and Pancreatic Surgery Department of Shulan (Hangzhou) Hospital, Hangzhou 310015, China
  • Received:2023-07-28 Published:2023-10-25
  • Corresponding author: Wu Zhang
引用本文:

汤鹏昊, 张武. 肠道微生态与肝移植围手术期并发症相关研究进展[J/OL]. 中华移植杂志(电子版), 2023, 17(05): 303-307.

Penghao Tang, Wu Zhang. Progress in mechanism research about intestinal microecology with perioperative complications of liver transplantation[J/OL]. Chinese Journal of Transplantation(Electronic Edition), 2023, 17(05): 303-307.

肝脏与肠道能够通过肠肝轴进行双向影响。正常人体的肠道屏障可以限制肠源性细菌及大分子抗原和内毒素的滤过。对于接受肝移植的受者而言,供肝缺血再灌注损伤以及移植肝早期功能不全,将削弱胆汁酸对肠道菌群的抑制能力。肠道淤血导致炎症因子聚集,产生大量氧自由基,破坏肠道屏障并促使肠道菌群经肠肝轴移位。肠道微生态失衡会对供肝产生多方面影响,并增加肝移植围手术期感染、急性排斥反应和胆道并发症的发生风险。通过进一步探索肠道微生态影响肝移植围手术期并发症的新机制,及时发现并干预并发症的发生发展,将有效降低肝移植受者围手术期病死率,改善长期预后。

The liver and gut can have bidirectional effects through the gut-liver axis. The gut barrier in a normal human can limit the filtration of gut bacteria, macromolecular antigens, and endotoxins. However, for liver transplantation recipients, ischemia-reperfusion injury and early functional impairment of the donor liver will weaken the inhibition of bile acids on gut microbiota. Gut congestion can cause the accumulation of inflammatory factors, produce a large amount of oxygen free radicals, disrupt the gut barrier, and promote the translocation of gut microbiota through the gut liver axis. The imbalance of gut microbiota can have multiple impacts on the donor liver and increase the risk of perioperative infection, acute rejection, and biliary complications. In the future, by further exploring the new mechanisms of the impact of gut microbiota on perioperative complications of liver transplantation, detection and intervention of the occurrence and development of complications, we will effectively reduce the perioperative mortality rate of patients, improve long-term prognosis, and bring positive effects to the development of liver transplantation.

1
Wang R, Tang R, Li B, et al. Gut microbiome, liver immunology, and liver diseases[J]. Cell Mol Immunol, 2021, 18(1): 4-17.
2
Milosevic I, Vujovic A, Barac A, et al. Gut-liver axis, gut microbiota, and its modulation in the management of liver diseases: a review of the literature[J]. Int J Mol Sci, 2019, 20(2): 395.
3
Gomaa EZ. Human gut microbiota/microbiome in health and diseases: a review[J]. Antonie Van Leeuwenhoek, 2020, 113(12): 2019-2040.
4
Albillos A, de Gottardi A, Rescigno M. The gut-liver axis in liver disease: pathophysiological basis for therapy[J]. J Hepatol, 2020, 72(3): 558-577.
5
Albhaisi SAM, Bajaj JS, Sanyal AJ. Role of gut microbiota in liver disease[J]. Am J Physiol Gastrointest Liver Physiol, 2020, 318(1): G84-G98.
6
Boeri L, Izzo L, Sardelli L, et al. Advanced organ-on-a-chip devices to investigate liver multi-organ communication: focus on gut, microbiota and brain[J]. Bioengineering (Basel), 2019, 6(4): 91.
7
Suzuki T. Regulation of the intestinal barrier by nutrients: the role of tight junctions[J]. Anim Sci J, 2020, 91(1): e13357.
8
Chen Y, Cui W, Li X, et al. Interaction between commensal bacteria, immune response and the intestinal barrier in inflammatory bowel disease[J]. Front Immunol, 202112:761981.
9
Yang M, Gu Y, Li L, et al. Bile acid-gut microbiota axis in inflammatory bowel disease: from bench to bedside[J]. Nutrients, 2021, 13(9): 3143.
10
DiMarzio M, Rusconi B, Yennawar NH, et al. Identification of a mouse Lactobacillus johnsonii strain with deconjugase activity against the FXR antagonist T-β-MCA[J]. PLoS One, 2017, 12(9): e0183564.
11
于爽,顾志敏,樊亚东,等. 胆汁酸免疫调节作用及其与肠道、肝脏炎症性疾病相关性的研究进展[J]. 中国免疫学杂志2022, 38(16): 2031-2036.
12
Xu Z, Jiang N, Xiao Y, et al. The role of gut microbiota in liver regeneration[J]. Front Immunol, 2022, 13:1003376.
13
Wang H, Xi Z, Deng L, et al. Macrophage polarization and liver ischemia-reperfusion injury[J]. Int J Med Sci, 2021, 18(5): 1104-1113.
14
Deng F, Lin ZB, Sun QS, et al. The role of intestinal microbiota and its metabolites in intestinal and extraintestinal organ injury induced by intestinal ischemia reperfusion injury[J]. Int J Biol Sci, 2022, 18(10): 3981-3992.
15
Kato K, Nagao M, Miyamoto K, et al. Longitudinal analysis of the intestinal microbiota in liver transplantation[J]. Transplant Direct, 2017, 3(4):e144.
16
Hu J, Deng F, Zhao B, et al. Lactobacillus murinus alleviate intestinal ischemia/reperfusion injury through promoting the release of interleukin-10 from M2 macrophages via Toll-like receptor 2 signaling[J]. Microbiome, 2022, 10(1):38.
17
El-Bendary M, Naemattalah M, Yassen A, et al. Interrelationship between Toll-like receptors and infection after orthotopic liver transplantation[J]. World J Transplant, 2020, 10(6): 162-172.
18
Rueter C, Bielaszewska M. Secretion and delivery of intestinal pathogenic Escherichia coli virulence factors via outer membrane vesicles[J]. Front Cell Infect Microbiol, 2020, 10: 91.
19
Wu H, Xie S, Miao J, et al. Lactobacillus reuteri maintains intestinal epithelial regeneration and repairs damaged intestinal mucosa[J]. Gut Microbes, 2020, 11(4): 997-1014.
20
Kahn J, Pregartner G, Schemmer P. Effects of both pro- and synbiotics in liver surgery and transplantation with special focus on the gut-liver axis-a systematic review and Meta-analysis[J]. Nutrients, 2020, 12(8): 2461.
21
Kirkpatrick CL, Parsley NC, Bartges TE, et al. Exploring bioactive peptides from bacterial secretomes using PepSAVI-MS: identification and characterization of Bac-21 from Enterococcus faecalis pPD1[J]. Microb Biotechnol, 2018, 11(5): 943-951.
22
Ronca V, Wootton G, Milani C, et al. The immunological basis of liver allograft rejection[J]. Front Immunol, 2020, 11: 2155.
23
Liu Y, Pu X, Qin X, et al. Neutrophil extracellular traps regulate HMGB1 translocation and kupffer cell M1 polarization during acute liver transplantation rejection[J]. Front Immunol, 2022, 13: 823511.
24
Ren Z, Jiang J, Lu H, et al. Intestinal microbial variation may predict early acute rejection after liver transplantation in rats[J]. Transplantation, 2014, 98(8): 844-852.
25
Lee SK, Jhun JY, Lee SY, et al. A decrease in functional microbiomes represented as Faecalibacterium affects immune homeostasis in long-term stable liver transplant patients[J]. Gut Microbes, 2022, 14(1): 2102885.
26
Nemes B, Gámán G, Doros A. Biliary complications after liver transplantation[J]. Expert Rev Gastroenterol Hepatol, 2015, 9(4): 447-466.
27
Wang SF, Huang ZY, Chen XP. Biliary complications after living donor liver transplantation[J]. Liver Transpl, 2011, 17(10): 1127-1136.
28
Zuhair M, Smit GSA, Wallis G, et al. Estimation of the worldwide seroprevalence of cytomegalovirus: a systematic review and meta-analysis[J]. Rev Med Virol, 2019, 29(3): e2034.
29
Griffiths P, Reeves M. Pathogenesis of human cytomegalovirus in the immunocompromised host[J]. Nat Rev Microbiol, 2021, 19(12): 759-773.
30
Le-Trilling VTK, Ebel JF, Baier F, et al. Acute cytomegalovirus infection modulates the intestinal microbiota and targets intestinal epithelial cells[J]. Eur J Immunol, 2023, 53(2): e2249940.
31
Georges P, Clerc C, Turco C, et al. Post-transplantation cytomegalovirus infection interplays with the development of anastomotic biliary strictures after liver transplantation[J]. Transpl Int, 2022, 35: 10292.
32
Makino K, Ishii T, Yoh T, et al. The usefulness of preoperative bile cultures for hepatectomy with biliary reconstruction[J]. Heliyon, 2022, 8(12): e12226.
33
Wong HJ, Lim WH, Ng CH, et al. Predictive and prognostic roles of gut microbial variation in liver transplant[J]. Front Med, 2022, 9: 873523.
34
Ma HD, Zhao ZB, Ma WT, et al. Gut microbiota translocation promotes autoimmune cholangitis[J]. J Autoimmun, 2018, 95: 47-57.
35
邬兴炳. 围手术期肠道微生态干预在肝移植术后腹腔感染防治中的应用[D]. 浙江:宁波大学,2019.
36
Chen Y, Tsai YH, Tseng BJ, et al. Influence of growth hormone and glutamine on intestinal stem cells: a narrative review[J]. Nutrients, 2019, 11(8): 1941.
[1] 陈进宏. 腹腔镜活体供肝获取规范与创新[J/OL]. 中华普通外科学文献(电子版), 2024, 18(05): 324-324.
[2] 中华医学会器官移植学分会, 中国医师协会器官移植医师分会. 中国活体肝移植供者微创手术技术指南(2024版)[J/OL]. 中华普通外科学文献(电子版), 2024, 18(04): 241-252.
[3] 胡宁宁, 赵延荣, 王栋, 王胜亮, 郭源. FMNL3与肝细胞癌肝移植受者预后的相关性研究[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 283-288.
[4] 仲福顺, 余露, 范晓礼, 叶啟发. 肝移植治疗肝上皮样血管内皮瘤一例[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 293-297.
[5] 刘冉佳, 崔向丽, 周效竹, 曲伟, 朱志军. 儿童肝移植受者健康相关生存质量评价的荟萃分析[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 302-309.
[6] 贺健, 张骊, 王洪海, 蒋文涛. 肝移植术后脾功能亢进转归及治疗研究进展[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 310-314.
[7] 王淑贤, 张良灏, 王利君, 张慧, 郭源, 许传屾, 李志强, 蔡金贞, 解曼, 饶伟. 成人肝移植围手术期严重心血管事件危险因素分析及预测模型研究[J/OL]. 中华移植杂志(电子版), 2024, 18(04): 222-229.
[8] 张丽娜, 邢建坤, 张梁, 李云生, 王兢, 孙丽莹, 朱志军. 婴幼儿活体肝移植受者术中麻醉护理单中心经验[J/OL]. 中华移植杂志(电子版), 2024, 18(04): 235-238.
[9] 黄建朋, 邹建强, 宗华. 肝移植术后腹壁疝诊治初步经验[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(04): 471-473.
[10] 傅斌生, 冯啸, 杨卿, 曾凯宁, 姚嘉, 唐晖, 刘剑戎, 魏绪霞, 易慧敏, 易述红, 陈规划, 杨扬. 脂肪变性供肝在成人劈离式肝移植中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 789-794.
[11] 中华医学会器官移植学分会. 肝移植术后缺血性胆道病变诊断与治疗中国实践指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 739-748.
[12] 魏志鸿, 刘建勇, 吴小雅, 杨芳, 吕立志, 江艺, 蔡秋程. 肝移植术后急性移植物抗宿主病的诊治(附四例报告)[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 846-851.
[13] 中华医学会器官移植学分会, 中华医学会外科学分会外科手术学学组, 中华医学会外科学分会移植学组, 华南劈离式肝移植联盟. 劈离式供肝儿童肝移植中国临床操作指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 593-601.
[14] 刘军, 丘文静, 孙方昊, 李松盈, 易述红, 傅斌生, 杨扬, 罗慧. 在体与离体劈离式肝移植在儿童肝移植中的应用比较[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 688-693.
[15] 张红君, 郑博文, 廖梅, 任杰. 超声及超声造影在肝移植术后上腹部淋巴结良恶性鉴别诊断中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 562-567.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?