切换至 "中华医学电子期刊资源库"

中华移植杂志(电子版) ›› 2024, Vol. 18 ›› Issue (03) : 159 -164. doi: 10.3877/cma.j.issn.1674-3903.2024.03.003

论著

琥珀酸受体1加重肾脏缺血再灌注损伤的作用研究
彭瑞1, 杨瑞文1, 魏澹宁2, 夏永良2,()   
  1. 1. 310003 杭州,浙江中医药大学附属第一医院健康管理中心
    2. 310003 杭州,浙江中医药大学附属第一医院健康管理中心;310003 杭州,浙江中医药大学附属第一医院全科医学科
  • 收稿日期:2024-02-10 出版日期:2024-06-25
  • 通信作者: 夏永良
  • 基金资助:
    浙江省中医药科技计划(2023ZR023)

Role of succinate receptor 1 in exacerbation of kidney ischemia-reperfusion injury

Rui Peng1, Ruiwen Yang1, Danning Wei2, Yongliang Xia2,()   

  1. 1. Health Management Center, the First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou 310003, China
    2. Health Management Center, the First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou 310003, China; General Medicine Department, the First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou 310003, China
  • Received:2024-02-10 Published:2024-06-25
  • Corresponding author: Yongliang Xia
引用本文:

彭瑞, 杨瑞文, 魏澹宁, 夏永良. 琥珀酸受体1加重肾脏缺血再灌注损伤的作用研究[J]. 中华移植杂志(电子版), 2024, 18(03): 159-164.

Rui Peng, Ruiwen Yang, Danning Wei, Yongliang Xia. Role of succinate receptor 1 in exacerbation of kidney ischemia-reperfusion injury[J]. Chinese Journal of Transplantation(Electronic Edition), 2024, 18(03): 159-164.

目的

探究琥珀酸受体1(SUCNR1)在肾脏缺血再灌注损伤(IRI)中的可能作用及机制。

方法

选取40只20~25 g的SPF级C57雄性小鼠分为假手术组、假手术+琥珀酸组、假手术+IgG组、假手术+SUCNR1抗体组、IRI组、IRI+IgG组、IRI+琥珀酸组和IRI+SUCNR1抗体组。IRI模型构建成功后取小鼠血清行肾功能和细胞因子检测,同时取小鼠肾脏组织行病理组织学染色以及SUCNR1 mRNA和蛋白表达分析。组间计量资料比较采用独立样本t检验;多组间比较采用单因素方差分析,组间两两比较采用Bonferroni检验。P<0.05为差异有统计学意义。

结果

假手术组和IRI组血清琥珀酸含量分别为(28.74±3.14)和(52.60±4.66)μmol/L,差异有统计学意义(t=-9.494,P<0.05);假手术组与IRI组小鼠肾脏组织SUCNR1 mRNA相对水平分别为(1.00±0.14)和(3.65±1.05),差异有统计学意义(t=-5.567,P<0.05);假手术组与IRI组小鼠肾脏组织SUCNR1蛋白相对表达水平分别为(0.16±0.04)和(0.63±0.06),差异有统计学意义(t=-14.574,P<0.05)。假手术组、假手术+琥珀酸组、IRI组及IRI+琥珀酸组小鼠血清肌酐和尿素氮差异均有统计学意义(F=176.15和131.05,P均<0.05)。与IRI组相比,IRI+琥珀酸组小鼠肾脏组织病理结果示损伤加重。假手术组、假手术+琥珀酸组、IRI组及IRI+琥珀酸组小鼠血清IL-6和TNF-α水平差异均有统计学意义(F=256.25和268.99,P均<0.05)。假手术+IgG组、假手术+SUCNR1抗体组、IRI+IgG组以及IRI+SUCNR1抗体组血清肌酐和尿素氮水平差异均有统计学意义(F=54.13和84.52,P均<0.05)。与IRI+IgG组相比,IRI+SUCNR1抗体组小鼠肾脏组织中肾小管损伤、间质扩张水肿和炎症细胞浸润等均减轻。与IRI+IgG组相比,IRI+SUCNR1抗体组小鼠肾脏组织凋亡水平减轻。假手术组、假手术+SUCNR1抗体组、IRI组以及IRI+SUCNR1抗体组小鼠血清中IL-6和TNF-α差异均有统计学意义(F=123.31和268.144,P均<0.05)。

结论

SUCNR1可能通过促进小鼠肾脏炎性反应和细胞凋亡加重肾脏IRI。

Objective

To investigate the possible role and underlying mechanism of succinate receptor 1 (SUCNR1) in kidney ischemia-reperfusion injury (IRI).

Methods

Forty male C57 mice weighing 20-25 g with SPF grade were divided into 8 groups: sham-operated group, sham-operated+ succinate group, sham-operated+ IgG group, sham-operated+ SUCNR1 antibody group, IRI group, IRI+ IgG group, IRI+ succinate group, and IRI+ SUCNR1 antibody group. After the successful establishment of the IRI model, kidney function and cytokines level were measured from the serum, while the mice kidney tissues were obtained for pathological and histological staining as well as SUCNR1 mRNA and protein expression analysis. Measurement data between groups were analyzed by independent Student′s t-test. One-way analysis of variance was used for comparison among multiple groups, and that between groups with P<0.05 denoted statistical significance.

Results

Serum succinate levels in the sham-operated group and IRI group were (28.74±3.14) and (52.60±4.66)μmol/L, respectively, with statistically significant difference (t=-9.494, P<0.05); the relative levels of SUCNR1 mRNA in the sham-operated group and IRI group were (1.00±0.14) and (3.65±1.05), respectively, with statistically significant difference (t=-5.567, P<0.05); the relative expression levels of SUCNR1 protein in the sham-operated group and IRI group were (0.16±0.04) and (0.63±0.06), respectively, and the difference was statistically significant (t=-14.574, P<0.05). The differences in serum creatinine and urea nitrogen in mice in the sham-operated group, sham-operated+ succinate group, IRI group and IRI+ succinate group were statistically significant (F=176.15 and 131.05, all P<0.05). Renal tubular injury, interstitial dilatation and edema, and inflammatory cell infiltration were observed in the IRI group compared to the sham-operated group, which were aggravated in IRI+ succinate group. The level of apoptosis in the renal tissues of mice in IRI+ succinate group was significantly increased compared with that in the IRI group. The differences in serum IL-6 and TNF-α levels in mice in the sham-operated group, sham-operated+ succinate group, IRI group, and IRI+ succinate group were statistically significant (F=256.25 and 268.99, all P<0.05). The differences in serum creatinine and urea nitrogen levels in the sham-operated+ IgG group, sham-operated+ SUCNR1 antibody group, IRI+ IgG group, and IRI+ SUCNR1 antibody group were statistically significant (F=54.13 and 84.52, all P<0.05). Compared with the IRI+ IgG group, renal tubular injury, interstitial dilatation and edema, and inflammatory cell infiltration were significantly reduced in IRI+ SUCNR1 antibody group. Compared with the IRI+ IgG group, the apoptosis level in mice kidney tissue was significantly reduced in IRI+ SUCNR1 antibody group. The differences in IL-6 and TNF-α in the serum of mice in the sham-operated, sham-operated+ SUCNR1 antibody, IRI, and IRI+ SUCNR1 antibody groups were statistically significant (F=123.31 and 268.144, all P<0.05).

Conclusion

SUCNR1 may aggravate mice renal IRI by promoting renal inflammatory response and apoptosis.

表1 反转录聚合酶链反应引物序列
图1 假手术组与IRI组肾脏组织SUCNR mRNA和蛋白相对表达水平比较结果注:SUCNR.琥珀酸受体;IRI.缺血再灌注损伤;GAPDH.甘油醛-3-磷酸脱氢酶;a. SUCNR1 mRNA相对水平;b. SUCNR1蛋白相对表达水平;*P<0.05
表2 假手术组、假手术+琥珀酸组、IRI组及IRI+琥珀酸组小鼠肾功能比较(±s)
图2 假手术组、假手术+琥珀酸组、IRI组及IRI+琥珀酸组小鼠肾脏组织HE染色(×100)注:IRI.缺血再灌注损伤
图3 IRI组和IRI+琥珀酸组小鼠肾脏组织TUNEL染色(×200)注:IRI.缺血再灌注损伤
表3 假手术组、假手术+琥珀酸组、IRI组以及IRI+琥珀酸组小鼠血清中IL-6和TNF-α比较(pg/mL,±s)
表4 假手术+IgG组、假手术+SUCNR1抗体组、IRI+IgG组以及IRI+SUCNR1抗体组小鼠肾功能比较(±s)
图4 假手术+IgG组、假手术+SCUNR1抗体组、IRI+IgG组以及IRI+SCUNR1抗体组小鼠肾脏组织HE染色(×100)注:IRI.缺血再灌注损伤;SUCNR.琥珀酸受体
图5 IRI+IgG组和IRI+SUCNR1抗体组小鼠肾脏组织TUNEL染色(×200)注:IRI.缺血再灌注损伤;SUCNR.琥珀酸受体
表5 假手术组、假手术+SUCNR1抗体组、IRI组以及IRI+SUCNR1抗体组小鼠血清IL-6和TNF-α水平比较(pg/mL,±s)
1
Zhou R, Liu H, Hou X, et al. Bi-functional KIT-PR1P peptides combine with VEGF to protect ischemic kidney in rats by targeting to Kim-1[J]. Regen Ther, 2024, 25: 162-173.
2
Zhong D, Quan L, Hao C, et al. Targeting mPGES-2 to protect against acute kidney injury via inhibition of ferroptosis dependent on p53[J]. Cell Death Dis, 2023, 14(10): 710.
3
Song S, Hou X, Zhang W, et al. Specific bFGF targeting of KIM-1 in ischemic kidneys protects against renal ischemia-reperfusion injury in rats[J]. Regen Biomater, 2022, 9: rbac029.
4
Wu KK. Extracellular Succinate: a physiological messenger and a pathological trigger[J]. Int J Mol Sci, 2023, 24(13): 11165
5
Kuo CC, Wu JY, Wu KK. Cancer-derived extracellular succinate: a driver of cancer metastasis[J]. J Biomed Sci, 2022, 29(1): 93.
6
Mills EL, Harmon C, Jedrychowski MP, et al. UCP1 governs liver extracellular succinate and inflammatory pathogenesis[J]. Nat Metab, 2021, 3(5): 604-617.
7
Macias-Ceja DC, Ortiz-Masia D, Salvador P, et al. Succinate receptor mediates intestinal inflammation and fibrosis[J]. Mucosal Immunol, 2019, 12(1): 178-187.
8
Prag HA, Gruszczyk AV, Huang MM, et al. Mechanism of succinate efflux upon reperfusion of the ischaemic heart[J]. Cardiovasc Res, 2021, 117(4): 1188-1201.
9
Wang YH, Yan ZZ, Luo SD, et al. Gut microbiota-derived succinate aggravates acute lung injury after intestinal ischaemia/reperfusion in mice[J]. Eur Respir J, 2023, 61(2): 2200840.
10
Sun H, Zhu G, Ling S, et al. 4′-O-methylbavachalcone inhibits succinate induced cardiomyocyte hypertrophy via the NFATc4 pathway [J]. Exp Ther Med, 2023, 25(4): 172.
11
Gilissen J, Jouret F, Pirotte B, et al. Insight into SUCNR1 (GPR91) structure and function[J]. Pharmacol Ther, 2016, 159: 56-65.
12
Jiang S, Su H. Exploration of the shared gene signatures and biological mechanisms between ischemia-reperfusion injury and antibody-mediated rejection in renal transplantation [J]. Transpl Immunol, 2024, 83:102001.
13
Nagaraja P, Roberts GW, Stephens M,et al. Influence of delayed graft function and acute rejection on outcomes after kidney transplantation from donors after cardiac death [J]. Transplantation, 2012, 94(12): 1218-1223.
14
Fan H, Liu J, Sun J, et al. Advances in the study of B cells in renal ischemia-reperfusion injury [J]. Front Immunol, 2023, 14: 1216094.
15
Lasorsa F, Rutigliano M, Milella M, et al. Complement system and the kidney: its role in renal diseases, kidney transplantation and renal cell carcinoma[J]. Int J Mol Sci, 2023, 24(22): 16515.
16
Zhang X, Lyu D, Li S et al. Discovery of a SUCNR1 antagonist for potential treatment of diabetic nephropathy: In silico and in vitro studies [J]. Int J Biol Macromol, 2024, 268(Pt 2): 131898.
17
Fernandez-Veledo S, Marsal-Beltran A, Vendrell J. Type 2 diabetes and succinate: unmasking an age-old molecule[J]. Diabetologia, 2024, 67(3): 430-442.
18
Regard JB, Sato IT, Coughlin SR. Anatomical profiling of G protein-coupled receptor expression[J]. Cell, 2008, 135(3): 561-571.
19
Oh CJ, Kim MJ, Lee J M, et al. Inhibition of pyruvate dehydrogenase kinase 4 ameliorates kidney ischemia-reperfusion injury by reducing succinate accumulation during ischemia and preserving mitochondrial function during reperfusion[J]. Kidney Int, 2023, 104(4): 724-739.
20
Patel NS, Chatterjee PK, Di Paola R, et al. Endogenous interleukin-6 enhances the renal injury, dysfunction, and inflammation caused by ischemia/reperfusion[J]. J Pharmacol Exp Ther, 2005, 312(3):1170-1178.
21
Di Paola R, Genovese T, Impellizzeri D, et al. The renal injury and inflammation caused by ischemia-reperfusion are reduced by genetic inhibition of TNF-αR1: a comparison with infliximab treatment[J]. Eur J Pharmacol, 2013, 700(1-3):134-146.
[1] 樊恒, 孙敏, 朱建华. 红景天苷通过抑制PI3K/AKT/mTOR信号通路对大鼠脓毒症急性肾损伤的保护作用[J]. 中华危重症医学杂志(电子版), 2024, 17(03): 188-195.
[2] 张锦丽, 席毛毛, 褚志刚, 栾夏刚, 陈诺, 王德运, 谢卫国. 大面积烧伤患者发生早期急性肾损伤的危险因素分析[J]. 中华损伤与修复杂志(电子版), 2024, 19(04): 282-287.
[3] 陈荣, 钟鑫, 谭平, 张朋. 以阵发性腰痛、血尿、高血压为表现的右肾转移性副神经节瘤一例报告[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 172-174.
[4] 中华医学会器官移植学分会, 中国医师协会器官移植医师分会. 中国肝移植受者肾损伤管理临床实践指南(2023版)[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 276-288.
[5] 何娅妮. 糖尿病肾脏病患者的血糖监测评估与降糖治疗[J]. 中华肾病研究电子杂志, 2024, 13(03): 180-180.
[6] 王小龙, 吴杰, 段姝伟, 王超卉, 潘娜, 白圆圆, 李航天, 蔡广研. 不同等级体力活动对慢性肾脏病患者预后的影响[J]. 中华肾病研究电子杂志, 2024, 13(03): 121-128.
[7] 张一绚, 韩冰, 刘超, 李思晨, 孙雪峰. 年轻化内环境改善老年小鼠肾缺血再灌注损伤诱导的肾间质纤维化[J]. 中华肾病研究电子杂志, 2024, 13(03): 129-133.
[8] 林玲, 李京儒, 沈瑞华, 林惠, 乔晞. 基于生物信息学分析小鼠急性肾损伤和急性肺损伤的枢纽基因[J]. 中华肾病研究电子杂志, 2024, 13(03): 134-144.
[9] 陆文琪, 赵艳茹, 李焕娣, 樊欣娜, 王佳, 李萍. 2型糖尿病患者血清SMAD2和SOX6表达及其与蛋白尿的关系[J]. 中华肾病研究电子杂志, 2024, 13(03): 145-151.
[10] 张艺, 任秀君, 郭孟玮, 赵雅芳, 李一凡, 李佳阳, 任晓暄, 邬继红, 卢海洋. 电针预处理对脑缺血再灌注大鼠行为学及外周血内皮祖细胞的影响[J]. 中华神经创伤外科电子杂志, 2024, 10(02): 71-77.
[11] 周建芳, 罗旭颖, 张琳琳, 李宏亮, 杨燕琳, 陈光强, 石广志. 开颅术后危重患者急性肾损伤的发病率、危险因素及其对预后的影响[J]. 中华重症医学电子杂志, 2024, 10(02): 148-156.
[12] 崔秋子, 姚红曼, 艾迎春. 监测NLR、PLR、CAR、白蛋白、血钙及血糖指标水平对急性胰腺炎患者急性肾损伤的预测价值分析[J]. 中华消化病与影像杂志(电子版), 2024, 14(03): 244-248.
[13] 奚培培, 周加军. 慢性肾脏病患者肌少症机制和诊治的研究进展[J]. 中华临床医师杂志(电子版), 2024, 18(05): 491-495.
[14] 孙双权, 孙玮玮, 王勇, 方道成, 温晖. 肾脏混合性上皮和间质肿瘤一例[J]. 中华临床医师杂志(电子版), 2024, 18(05): 512-515.
[15] 韦美菊, 潘玲. 肠道菌群-胆汁酸代谢轴在慢性肾脏病中的研究进展[J]. 中华临床医师杂志(电子版), 2024, 18(02): 219-222.
阅读次数
全文


摘要