切换至 "中华医学电子期刊资源库"

中华移植杂志(电子版) ›› 2024, Vol. 18 ›› Issue (03) : 181 -185. doi: 10.3877/cma.j.issn.1674-3903.2024.03.007

综述

巨噬细胞-肌成纤维细胞转化在肾纤维化过程中的作用
李卓骋1, 陈羽翔1, 高亮1, 张宇1, 朱许源1, 马晓杰1, 李涛1, 赵甜甜1, 蒋鸿涛2,()   
  1. 1. 海口 570311,海南医学院第二附属医院肾移植科
    2. 海口 570311,海南医学院第二附属医院肾移植科;海口 571199,海南医学院国家卫生健康委热带病防治重点实验室
  • 收稿日期:2024-01-08 出版日期:2024-06-25
  • 通信作者: 蒋鸿涛
  • 基金资助:
    海南医学院2022年研究生创新科研项目(HYYB2022A07); 海南省科技厅自然科学基金高层次人才项目(820RC766); 海南省卫生计生行业科研项目(20A200360); 海南省科技厅青年项目(821QN413)

The role of macrophage-to-myofibroblast transition in renal fibrosis

Zhuocheng Li1, Yuxiang Chen1, Liang Gao1, Yu Zhang1, Xuyuan Zhu1, Xiaojie Ma1, Tao Li1, Tiantian Zhao1, Hongtao Jiang2,()   

  1. 1. Department of Kidney Transplantation, the Second Affiliated Hospital of Hainan Medical University, Haikou 570311, China
    2. Department of Kidney Transplantation, the Second Affiliated Hospital of Hainan Medical University, Haikou 570311, China; NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou 571199, China
  • Received:2024-01-08 Published:2024-06-25
  • Corresponding author: Hongtao Jiang
引用本文:

李卓骋, 陈羽翔, 高亮, 张宇, 朱许源, 马晓杰, 李涛, 赵甜甜, 蒋鸿涛. 巨噬细胞-肌成纤维细胞转化在肾纤维化过程中的作用[J]. 中华移植杂志(电子版), 2024, 18(03): 181-185.

Zhuocheng Li, Yuxiang Chen, Liang Gao, Yu Zhang, Xuyuan Zhu, Xiaojie Ma, Tao Li, Tiantian Zhao, Hongtao Jiang. The role of macrophage-to-myofibroblast transition in renal fibrosis[J]. Chinese Journal of Transplantation(Electronic Edition), 2024, 18(03): 181-185.

肾纤维化是慢性肾脏病进展中的主要病理变化,会导致肾脏结构和功能的严重损伤。巨噬细胞-肌成纤维细胞转化(MMT)是肾纤维化疾病进展过程中的核心环节,该过程与慢性炎症应激环境密切相关,其中骨髓源性巨噬细胞在上述环境中分化为肌成纤维细胞,从而促进肾纤维化的发展。本文综述MMT在肾纤维化中的作用研究进展以及当前治疗方案(包括针对特定信号通路的药物治疗和新兴治疗策略),重点探讨TGF-β1/Smad3信号通路、Janus激酶3/信号转导与转录激活因子6信号通路以及M1和M2型巨噬细胞在MMT中的作用。

Renal fibrosis is the primary pathological change during the progression of chronic kidney disease, leading to severe damage to kidney structure and function. Macrophage-to-myofibroblast transition (MMT) is a core element in the development of renal fibrosis, occurring in an environment of chronic inflammatory stress, where bone marrow-derived macrophages differentiate into myofibroblasts, thus promoting the progression of renal fibrosis. This article reviews the research progress and mechanisms of MMT in kidney fibrosis, focusing on the role of transforming growth factor-β1/Smad3 signaling pathway, Janus kinase 3/signal transducer and activator of transcription 6 signaling pathway, and the role of M1 and M2 macrophages in MMT. Furthermore, this article also comprehensively presents current treatment strategies, including pharmacological treatments targeting specific signaling pathways and emerging therapeutic strategies, showing the latest advancements in the field of renal fibrosis treatment.

1
Hill NR, Fatoba ST, Oke JL, et al. Global prevalence of chronic kidney disease - a systematic review and meta-analysis[J]. PLoS One, 2016, 11(7): e0158765.
2
Webster AC, Nagler EV, Morton RL, et al. Chronic kidney disease[J]. Lancet, 2017, 389(10075): 1238-1252.
3
Shook BA, Wasko RR, Rivera-Gonzalez GC, et al. Myofibroblast proliferation and heterogeneity are supported by macrophages during skin repair[J]. Science, 2018, 362(6417): eaar2971.
4
Kuppe C, Ibrahim MM, Kranz J, et al. Decoding myofibroblast origins in human kidney fibrosis[J]. Nature, 2021, 589(7841): 281-286.
5
Tang PM, Nikolic-Paterson DJ, Lan HY. Macrophages: versatile players in renal inflammation and fibrosis[J]. Nat Rev Nephrol, 2019, 15(3): 144-158.
6
Hewitson TD, Holt SG, Smith ER. Progression of tubulointerstitial fibrosis and the chronic kidney disease phenotype - role of risk factors and epigenetics[J]. Front Pharmacol, 2017, 8: 520.
7
Wang M, Xu H, Li Y, et al. Exogenous bone marrow derived-putative endothelial progenitor cells attenuate ischemia reperfusion-induced vascular injury and renal fibrosis in mice dependent on pericytes[J]. Theranostics, 2020, 10(26): 12144-12157.
8
Tanaka S, Portilla D, Okusa MD. Role of perivascular cells in kidney homeostasis, inflammation, repair and fibrosis[J]. Nat Rev Nephrol, 202319(11): 721-732.
9
Jordan NP, Tingle SJ, Shuttleworth VG, et al. MiR-126-3p is dynamically regulated in endothelial-to-mesenchymal transition during fibrosis[J]. Int J Mol Sci, 2021, 22(16): 8629.
10
Vierhout M, Ayoub A, Naiel S, et al. Monocyte and macrophage derived myofibroblasts: is it fate? A review of the current evidence[J]. Wound Repair Regen, 2021, 29(4): 548-562.
11
LeBleu VS, Taduri G, O′Connell J, et al. Origin and function of myofibroblasts in kidney fibrosis[J]. Nat Med, 2013, 19(8): 1047-1053.
12
Meng XM, Wang S, Huang XR, et al. Inflammatory macrophages can transdifferentiate into myofibroblasts during renal fibrosis[J]. Cell Death Dis, 2016, 7(12): e2495.
13
Wang S, Meng XM, Ng YY, et al. TGF-β Smad3 signalling regulates the transition of bone marrow-derived macrophages into myofibroblasts during tissue fibrosis[J]. Oncotarget, 2016, 7(8): 8809-8822.
14
Wei J, Xu Z, Yan X. The role of the macrophage-to-myofibroblast transition in renal fibrosis[J]. Front Immunol, 2022, 13: 934377.
15
Wang YY, Jiang H, Pan J, et al. Macrophage-to-myofibroblast transition contributes to interstitial fibrosis in chronic renal allograft injury[J]. J Am Soc Nephrol, 2017, 28(7): 2053-2067.
16
Locati M, Curtale G, Mantovani A. Diversity, mechanisms, and significance of macrophage plasticity[J]. Annu Rev Pathol, 2020, 15: 123-147.
17
Christofides A, Strauss L, Yeo A, et al. The complex role of tumor-infiltrating macrophages[J]. Nat Immunol, 2022, 23(8): 1148-1156.
18
Li X, Wu J, Zhu S, et al. Intragraft immune cells: accomplices or antagonists of recipient-derived macrophages in allograft fibrosis?[J]. Cell Mol Life Sci, 2023, 80(7): 195.
19
Liu B, Jiang J, Liang H, et al. Natural killer T cell/IL-4 signaling promotes bone marrow-derived fibroblast activation and M2 macrophage-to-myofibroblast transition in renal fibrosis[J]. Int Immunopharmacol, 2021, 98: 107907.
20
Liang H, Liu B, Gao Y, et al. Jmjd3/IRF4 axis aggravates myeloid fibroblast activation and m2 macrophage to myofibroblast transition in renal fibrosis[J]. Front Immunol, 2022, 13: 978262.
21
Qiang P, Hao J, Yang F, et al. Esaxerenone inhibits the macrophage-to-myofibroblast transition through mineralocorticoid receptor/TGF-beta1 pathway in mice induced with aldosterone[J]. Front Immunol, 2022, 13: 948658.
22
Su J, Morgani SM, David CJ, et al. TGF-β orchestrates fibrogenic and developmental EMTs via the RAS effector RREB1[J]. Nature, 2020, 577(7791): 566-571.
23
Yuan Q, Tang B, Zhang C. Signaling pathways of chronic kidney diseases, implications for therapeutics[J]. Signal Transduct Target Ther, 2022, 7(1): 182.
24
Zhang Y, Jin D, Kang X, et al. Signaling pathways involved in diabetic renal fibrosis[J]. Front Cell Dev Biol, 2021, 9: 696542.
25
Zou LL, Li JR, Li H, et al. TGF-β isoforms inhibit hepatitis C virus propagation in transforming growth factor beta/SMAD protein signalling pathway dependent and independent manners[J]. J Cell Mol Med, 2021, 25(7): 3498-3510.
26
Gifford CC, Tang J, Costello A, et al. Negative regulators of TGF-β1 signaling in renal fibrosis; pathological mechanisms and novel therapeutic opportunities[J]. Clin Sci (Lond), 2021, 135(2): 275-303.
27
Vander Ark A, Cao J, Li X. TGF-β receptors: in and beyond TGF-β signaling[J]. Cell Signal, 2018, 52: 112-120.
28
Lin Z, Chen A, Cui H, et al. Renal tubular epithelial cell necroptosis promotes tubulointerstitial fibrosis in patients with chronic kidney disease[J]. FASEB J, 2022, 36(12): e22625.
29
Xiao Y, Jiang X, Peng C, et al. BMP-7/Smads-induced inhibitor of differentiation 2 (Id2) upregulation and Id2/Twist interaction was involved in attenuating diabetic renal tubulointerstitial fibrosis[J]. Int J Biochem Cell Biol, 2019, 116: 105613.
30
Chen J, Xia Y, Lin X, et al. Smad3 signaling activates bone marrow-derived fibroblasts in renal fibrosis[J]. Lab Invest, 2014, 94(5): 545-556.
31
Wang Y, Li Y, Chen Z, et al. GSDMD-dependent neutrophil extracellular traps promote macrophage-to-myofibroblast transition and renal fibrosis in obstructive nephropathy[J]. Cell Death Dis, 2022, 13(8): 693.
32
Espinosa Gonzalez M, Volk-Draper L, Bhattarai N, et al. Th2 cytokines IL-4, IL-13, and IL-10 promote differentiation of pro-lymphatic progenitors derived from bone marrow myeloid precursors[J]. Stem Cells Dev, 2022, 31(11-12): 322-333.
33
Yan J, Zhang Z, Yang J, et al. JAK3/STAT6 Stimulates bone marrow-derived fibroblast activation in renal fibrosis[J]. J Am Soc Nephrol, 2015, 26(12): 3060-3071.
34
Zhou X, Chen H, Hu Y, et al. Enhancer of zeste homolog 2 promotes renal fibrosis after acute kidney injury by inducing epithelial-mesenchymal transition and activation of M2 macrophage polarization[J]. Cell Death Dis, 2023, 14(4): 253.
35
Lee YJ, Kim K, Kim M, et al. Inhibition of STAT6 activation by AS1517499 inhibits expression and activity of PPARγ in macrophages to resolve acute inflammation in mice[J]. Biomolecules, 2022, 12(3): 447.
36
Yuan T, Xia Y, Pan S, et al. STAT6 promoting oxalate crystal deposition-induced renal fibrosis by mediating macrophage-to-myofibroblast transition via inhibiting fatty acid oxidation[J]. Inflamm Res, 2023, 72(12): 2111-2126.
37
Shu H, Wang Y, Zhang H, et al. The role of the SGK3/TOPK signaling pathway in the transition from acute kidney injury to chronic kidney disease[J]. Front Pharmacol, 2023, 14: 1169054.
38
Feng Y, Guo F, Xia Z, et al. Inhibition of fatty acid-binding protein 4 attenuated kidney fibrosis by mediating macrophage-to-myofibroblast transition[J]. Front Immunol, 2020, 11: 566535.
39
Chen J, Tang Y, Zhong Y, et al. P2Y12 inhibitor clopidogrel inhibits renal fibrosis by blocking macrophage-to-myofibroblast transition[J]. Mol Ther, 2022, 30(9): 3017-3033.
40
Tang PM, Zhang YY, Xiao J, et al. Neural transcription factor Pou4f1 promotes renal fibrosis via macrophage-myofibroblast transition[J]. Proc Natl Acad Sci U S A, 2020, 117(34): 20741-20752.
41
Xiong Y, Chang Y, Hao J, et al. Eplerenone attenuates fibrosis in the contralateral kidney of UUO rats by preventing macrophage-to-myofibroblast transition[J]. Front Pharmacol, 2021, 12: 620433.
42
Luo L, Wang S, Hu Y, et al. Precisely regulating M2 subtype macrophages for renal fibrosis resolution[J]. ACS Nano, 2023, 17(22): 22508-22526.
43
Feng Y, Guo F, Mai H, et al. Pterostilbene, a bioactive component of blueberries, alleviates renal interstitial fibrosis by inhibiting macrophage-myofibroblast transition[J]. Am J Chin Med, 2020, 48(7): 1715-1729.
44
Yunzhao X, Lingjin L, Ziqian L, et al. Huoxue Jiedu Huayu recipe alleviates contralateral renal fibrosis in unilateral ureteral obstruction rats by inhibiting the transformation of macrophages to myofibroblast[J]. J Tradit Chin Med, 2023, 43(1): 105-112.
45
Xianyuan L, Wei Z, Yaqian D, et al. Anti-renal fibrosis effect of asperulosidic acid via TGF-β1/smad2/smad3 and NF-κB signaling pathways in a rat model of unilateral ureteral obstruction[J]. Phytomedicine, 2019, 53: 274-285.
[1] 李璐璐, 马利红, 金佳佳, 谷伟. 干扰素基因刺激因子通过肺巨噬细胞胞葬功能调控急性肺损伤小鼠修复的研究[J]. 中华危重症医学杂志(电子版), 2024, 17(02): 97-103.
[2] 薛嘉怡, 王丽, 艾涛. 巨噬细胞在儿童肺炎支原体肺炎中作用机制的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(06): 643-648.
[3] 陆宜仙, 张震涛, 夏德萌, 王家林. 巨噬细胞极化在骨质疏松中调控作用及机制的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 538-541.
[4] 王鹏, 肖厚安, 贾赤宇. 不同因素调控巨噬细胞极化在慢性难愈性创面中的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 454-459.
[5] 狄静怿, 陈禹江, 陈欣欣, 陈文霞. 基质细胞衍生因子1通过PI3K/AKT1信号通路对巨噬细胞极化的影响[J]. 中华口腔医学研究杂志(电子版), 2024, 18(02): 89-95.
[6] 曹飞, 庞俊. 前列腺癌免疫微环境中免疫抑制性细胞分类及其作用机制[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 121-125.
[7] 沃吟晴, 杨向群. 心脏巨噬细胞的生理功能及在心肌梗死后的作用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 167-171.
[8] 刘燕, 叶亚萍, 郑艳莉. 干扰LINC00466通过miR-493-3p/MIF抑制子宫内膜癌RL95-2细胞恶性生物学行为[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 151-158.
[9] 刘晓梅, 张露, 刘旭, 梁蝶. 巨噬细胞迁移抑制因子靶向miR-127-3p对人肾癌细胞生物学行为的影响[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 76-83.
[10] 周慧杰, 张云龙. 基于数据挖掘技术分析肾纤维化的中医病机与治法[J]. 中华肾病研究电子杂志, 2024, 13(03): 152-160.
[11] 金艳盛, 董改琴, 李晓忠. 巨噬细胞在慢性肾脏病患者血管钙化中的作用与机制研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 234-237.
[12] 吴琼, 朱国贞. 膜性肾病中M2巨噬细胞相关基因的生物信息学分析[J]. 中华肾病研究电子杂志, 2023, 12(03): 156-162.
[13] 陈含冰, 储翠林, 邱海波. 急性呼吸窘迫综合征中巨噬细胞死亡方式的研究进展[J]. 中华重症医学电子杂志, 2024, 10(01): 79-84.
[14] 李仔祥, 王苏贵, 张先云, 卢建文, 嵇宏声, 姜福金. 肿瘤相关性巨噬细胞通过TNF-α/B7H3调节人膀胱癌细胞增殖的研究[J]. 中华临床医师杂志(电子版), 2024, 18(01): 64-71.
[15] 李世浩, 王玉姣, 李子豪, 吴彬, 盛银良, 齐宇. 单细胞转录组分析巨噬细胞帽状蛋白对食管鳞癌细胞增殖和转移的影响[J]. 中华胸部外科电子杂志, 2023, 10(02): 98-105.
阅读次数
全文


摘要