切换至 "中华医学电子期刊资源库"

中华移植杂志(电子版) ›› 2024, Vol. 18 ›› Issue (03) : 186 -192. doi: 10.3877/cma.j.issn.1674-3903.2024.03.008

综述

细胞外囊泡在肾移植诊断和治疗中的研究进展
吕军好1, 林锦雯1, 张心怡1, 陈江华1,()   
  1. 1. 310006 杭州,浙江大学医学院附属第一医院肾脏病中心 浙江省肾脏病防治技术研究重点实验室 国家临床重点专科 浙江大学肾脏病研究所 浙江省肾脏与泌尿系统疾病临床医学研究中心
  • 收稿日期:2024-06-15 出版日期:2024-06-25
  • 通信作者: 陈江华
  • 基金资助:
    浙江省科技厅"领雁"研发公关计划项目(2023C03074); 国家自然科学基金(U21A20350)

The progress of extracellular vesicle in diagnosis and treatment of kidney transplantation

Junhao Lyu1, Jinwen Lin1, Xinyi Zhang1, Jianghua Chen1,()   

  1. 1. Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; National Key Clinical Department of Kidney Diseases; Institute of Nephrology, Zhejiang University; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou 310006, China
  • Received:2024-06-15 Published:2024-06-25
  • Corresponding author: Jianghua Chen
引用本文:

吕军好, 林锦雯, 张心怡, 陈江华. 细胞外囊泡在肾移植诊断和治疗中的研究进展[J/OL]. 中华移植杂志(电子版), 2024, 18(03): 186-192.

Junhao Lyu, Jinwen Lin, Xinyi Zhang, Jianghua Chen. The progress of extracellular vesicle in diagnosis and treatment of kidney transplantation[J/OL]. Chinese Journal of Transplantation(Electronic Edition), 2024, 18(03): 186-192.

细胞外囊泡(EV)是细胞释放到周围环境中的脂质双分子层囊泡,具有一系列信号传导作用,参与多种生理和病理过程。近年来,越来越多的研究发现EV作为疾病生物标志物和治疗载体的巨大潜能。在肾移植领域,研究显示尿液EV可以反映移植肾的病理生理状态,被认为具有潜在的诊断价值。此外,部分细胞来源的EV在移植免疫调节方面具有一定的治疗特性,凭借免疫原性低、具有靶向性和工程化潜能等优势,有望成为新一代的药物递送载体。本文综述EV的分类、分离和表征及其在肾移植诊断和治疗中的研究进展。

Extracellular vesicle (EV) is a lipid-bilayer particle released by cells into the extracellular environment with a range of signaling roles involved in a variety of physiological and pathological processes. Recently, increasing studies have found that EV has great potential as disease biomarker and therapeutic carrier. In the field of renal transplantation, researches have shown that urinary EV could reflect the pathophysiological status of the allograft and has been considered as a potential non-invasive diagnostic and prognostic biomarker. In addition, EV derived from certain cells has therapeutic properties of immunomodulation in transplantation and is proposed as an upcoming drug delivery platform with advantages of low immunogenicity, high tissue targeting and engineering potential. Therefore, this review described the classification, isolation and characterization of EV and introduced the research progress of EV in diagnosis and treatment of renal transplantation.

1
Zhao J, Zhu W, Mao Y, et al. Unignored intracellular journey and biomedical applications of extracellular vesicles[J]. Adv Drug Deliv Rev, 2024: 115388.
2
Ko SY, Lee W, Naora H. Harnessing microRNA-enriched extracellular vesicles for liquid biopsy[J]. Front Mol Biosci, 2024, 11: 1356780.
3
王玺惠,陈依,俞卫锋. 凋亡胞外囊泡在炎症与肿瘤发生、发展中的作用研究进展[J]. 浙江医学202345(10): 1116-1120.
4
史婷婷,张润兵,伍杨,等. 不同来源的细胞外囊泡在肝细胞癌发生进展中的作用[J]. 临床肝胆病杂志202440(6): 1264-1268.
5
Gołębiewska JE, Wardowska A, Pietrowska M, et al. Small extracellular vesicles in transplant rejection [J]. Cells, 2021, 10(11): 10112989
6
Zeng F, Chen Z, Chen R, et al. Graft-derived extracellular vesicles transported across subcapsular sinus macrophages elicit B cell alloimmunity after transplantation[J]. Sci Transl Med, 2021, 13(585): eabb0122.
7
Ashcroft J, Leighton P, Elliott TR, et al. Extracellular vesicles in kidney transplantation: a state-of-the-art review [J]. Kidney Int, 2022, 101(3): 485-497.
8
Welsh JA, Goberdhan DCI, O′driscoll L, et al. Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches [J]. J Extracell Vesicles, 2024, 13(2): e12404.
9
Kalluri R, Lebleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478): eaau6977.
10
Caruso S, Poon IKH. Apoptotic cell-derived extracellular vesicles: more than just debris[J]. Front Immunol, 2018, 9:1486.
11
Gardiner C, Di Vizio D, Sahoo S, et al. Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey[J]. J Extracell Vesicles, 2016, 5:32945.
12
Monguio-Tortajada M, Galvez-Monton C, Bayes-Genis A, et al. Extracellular vesicle isolation methods: rising impact of size-exclusion chromatography[J]. Cell Mol Life Sci, 2019, 76(12): 2369-2382.
13
Sidhom K, Obi PO, Saleem A. A review of exosomal isolation methods: is size exclusion chromatography the best option?[J]. Int J Mol Sci, 2020, 21(18): 21186466.
14
Koiffman N, Biran I, Aharon A, et al. A direct-imaging cryo-EM study of shedding extracellular vesicles from leukemic monocytes [J]. J Struct Biol, 2017, 198(3): 177-185.
15
Thery C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines[J]. J Extracell Vesicles, 2018, 7(1): 1535750.
16
Cuadrado-Payan E, Ramirez-Bajo MJ, Banon-Maneus E, et al. Physiopathological role of extracellular vesicles in alloimmunity and kidney transplantation and their use as biomarkers[J]. Front Immunol, 2023, 14:1154650.
17
Abinti M, Favi E, Alfieri CM, et al. Update on current and potential application of extracellular vesicles in kidney transplantation[J]. Am J Transplant, 2023, 23(11): 1673-1693.
18
Turco AE, Lam W, Rule AD, et al. Specific renal parenchymal-derived urinary extracellular vesicles identify age-associated structural changes in living donor kidneys[J]. J Extracell Vesicles, 2016, 5:29642.
19
Oshikawa-Hori S, Yokota-Ikeda N, Sonoda H, et al. Reduced urinary release of AQP1- and AQP2-bearing extracellular vesicles in patients with advanced chronic kidney disease[J]. Physiol Rep, 2021, 9(17): e15005.
20
Ines Lozano-Ramos S, Bancu I, Carreras-Planella L, et al. Molecular profile of urine extracellular vesicles from normo-functional kidneys reveal minimal differences between living and deceased donors [J]. BMC Nephrol, 2018, 19(1):189.
21
Gremmels H, De Jong OG, Toorop RJ, et al. The small RNA repertoire of small extracellular vesicles isolated from donor kidney preservation fluid provides a source for biomarker discovery for organ quality and posttransplantation graft function[J]. Transplant Direct, 2019, 5(9): e484.
22
Alvarez S, Suazo C, Boltansky A, et al. Urinary exosomes as a source of kidney dysfunction biomarker in renal transplantation[J]. Transplant Proc, 2013, 45(10): 3719-3723.
23
Dimuccio V, Ranghino A, Barbato LP, et al. Urinary CD133 extracellular vesicles are decreased in kidney transplanted patients with slow graft function and vascular damage[J]. PLoS One, 2014, 9(8):e104490.
24
Asvapromtada S, Sonoda H, Kinouchi M, et al. Characterization of urinary exosomal release of aquaporin-1 and-2 after renal ischemia-reperfusion in rats[J]. Am J Physiol Renal Physiol, 2018, 314(4): F584-F601.
25
Wang J, Li X, Wu X, et al. Expression profiling of exosomal miRNAs derived from the peripheral blood of kidney recipients with DGF using high-throughput sequencing[J]. Biomed Res Int, 2019, 2019: 1759697.
26
Al-Nedawi K, Haas-Neill S, Gangji A, et al. Circulating microvesicle protein is associated with renal transplant outcome[J]. Transpl Immunol, 2019, 55: 101210.
27
Rutman AK, Negi S, Saberi N, et al. Extracellular vesicles from kidney allografts express miR-218-5p and alter Th17/Treg ratios[J]. Front Immunol, 2022, 13:784374.
28
Park J, Lin HY, Assaker JP, et al. Integrated kidney exosome analysis for the detection of kidney transplant rejection[J]. Acs Nano, 2017, 11(11): 11041-11046.
29
Takada Y, Kamimura D, Jiang JJ, et al. Increased urinary exosomal SYT17 levels in chronic active antibody-mediated rejection after kidney transplantation via the IL-6 amplifier[J]. Int Immunol, 2020, 32(10): 653-662.
30
El Fekih R, Hurley J, Tadigotla V, et al. Discovery and validation of a urinary exosome mRNA signature for the diagnosis of human kidney transplant rejection[J]. J Am Soc Nephrol, 2021, 32(4): 994-1004.
31
Lim JH, Lee CH, Kim KY, et al. Novel urinary exosomal biomarkers of acute T cell-mediated rejection in kidney transplant recipients: A cross-sectional study[J]. PloS One, 2018, 13(9): e0204204.
32
Sigdel TK, Ng YW, Lee S, et al. Perturbations in the urinary exosome in transplant rejection[J]. Front Med (Lausanne), 2014, 1:57.
33
Tower CM, Reyes M, Nelson K, et al. Plasma C4d endothelial microvesicles increase in acute antibody-mediated rejection[J]. Transplantation, 2017, 101(9): 2235-2243.
34
Zhang H, Huang E, Kahwaji J, et al. Plasma exosomes from HLA-sensitized kidney transplant recipients contain mRNA transcripts which predict development of antibody-mediated rejection[J]. Transplantation, 2017, 101(10): 2419-2428.
35
Sharma M, Ravichandran R, Bansal S, et al. Tissue-associated self-antigens containing exosomes: role in allograft rejection[J]. Hum Immunol, 2018, 79(9): 653-658.
36
Saejong S, Townamchai N, Somparn P, et al. MicroRNA-21 in plasma exosome, but not from whole plasma, as a biomarker for the severe interstitial fibrosis and tubular atrophy (IF/TA) in post-renal transplantation[J]. Asian Pac J Allergy Immunol, 2022, 40(1): 94-102.
37
Chen Y, Han X, Sun Y, et al. A circulating exosomal microRNA panel as a novel biomarker for monitoring post-transplant renal graft function[J]. J Cell Mol Med, 2020, 24(20): 12154-12163.
38
Carreras-Planella L, Cucchiari D, Canas L, et al. Urinary vitronectin identifies patients with high levels of fibrosis in kidney grafts[J]. J Nephrol, 2021, 34(3): 861-874.
39
雷嘉豪,缪炳文,缪辉来. 细胞外囊泡与非编码RNA在肝缺血再灌注损伤中作用的研究进展[J]. 肝胆胰外科杂志202335(7):439-443.
40
Lazana I, Vassilopoulos G. A 'waste product' to save the day in the field of transplantation: the evolving potential of extracellular vesicles[J]. Immunology, 2022, 167(2): 154-164.
41
Lindoso RS, Collino F, Bruno S, et al. Extracellular vesicles released from mesenchymal stromal cells modulate miRNA in renal tubular cells and inhibit ATP depletion injury[J]. Stem Cells Dev, 2014, 23(15): 1809-1819.
42
Zou XY, Zhang GY, Cheng ZL, et al. Microvesicles derived from human Wharton′s Jelly mesenchymal stromal cells ameliorate renal ischemia-reperfusion injury in rats by suppressing CX3CL1[J]. Stem Cell Res Ther, 2014, 5(2): 40.
43
Vinas JL, Burger D, Zimpelmann J, et al. Transfer of microRNA-486-5p from human endothelial colony forming cell-derived exosomes reduces ischemic kidney injury[J]. Kidney Int, 2016, 90(6): 1238-1250.
44
Pang P, Abbott M, Chang SL, et al. Human vascular progenitor cells derived from renal arteries are endothelial-like and assist in the repair of injured renal capillary networks[J]. Kidney Int, 2017, 91(1): 129-143.
45
Dominguez JH, Liu Y, Gao H, et al. Renal tubular cell-derived extracellular vesicles accelerate the recovery of established renal ischemia reperfusion injury[J]. J Am Soc Nephrol, 2017, 28(12): 3533-3544.
46
Pan W, Li S, Li K, et al. Mesenchymal stem cells and extracellular vesicles: therapeutic potential in organ transplantation[J]. Stem Cells Int, 2024, 2024:2043550.
47
Gregorini M, Corradetti V, Pattonieri EF, et al. Perfusion of isolated rat kidney with mesenchymal stromal cells/extracellular vesicles prevents ischaemic injury[J]. J Cell Mol Med, 2017, 21(12): 3381-3393.
48
Grignano MA, Bruno S, Viglio S, et al. CD73-adenosinergic axis mediates the protective effect of extracellular vesicles derived from mesenchymal stromal cells on ischemic renal damage in a rat model of donation after circulatory death[J]. Int J Mol Sci, 2022, 23(18): 10681.
49
Rampino T, Gregorini M, Germinario G, et al. Extracellular vesicles derived from mesenchymal stromal cells delivered during hypothermic oxygenated machine perfusion repair ischemic/reperfusion damage of kidneys from extended criteria donors[J]. Biology, 2022, 11(3): 350.
50
Burrello J, Monticone S, Gai C, et al. Stem cell-derived extracellular vesicles and immune-modulation [J]. Front Cell Dev Biol, 2016, 4: 83.
51
Koch M, Lemke A, Lange C. Extracellular Vesicles from MSC modulate the immune response to renal allografts in a MHC disparate rat model [J]. Stem Cells Int, 2015, 2015: 486141.
52
Wu XQ, Yan TZ, Wang ZW, et al. BM-MSCs-derived microvesicles promote allogeneic kidney graft survival through enhancing micro-146a expression of dendritic cells[J]. Immunol Lett, 2017, 191:55-62.
53
Jose Ramirez-Bajo M, Rovira J, Lazo-Rodriguez M, et al. Impact of mesenchymal stromal cells and their extracellular vesicles in a rat model of kidney rejection[J]. Front Cell Dev Biol, 2020, 8: 10.
54
Fang Y, Bouari S, Hoogduijn MJ, et al. Therapeutic efficacy of extracellular vesicles to suppress allograft rejection in preclinical kidney transplantation models: a systematic review and meta-analysis[J]. Transplant Rev (Orlando), 2022, 36(4): 100714.
55
Peche H, Renaudin K, Beriou G, et al. Induction of tolerance by exosomes and short-term immunosuppression in a fully MHC-mismatched rat cardiac allograft model[J]. Am J Transplant, 2006, 6(7): 1541-1550.
56
Pang XL, Wang ZG, Liu L, et al. Immature dendritic cells derived exosomes promotes immune tolerance by regulating T cell differentiation in renal transplantation[J]. Aging (Albany NY), 2019, 11(20): 8911-8924.
57
Yu X, Huang C, Song B, et al. CD4 CD25 regulatory T cells-derived exosomes prolonged kidney allograft survival in a rat model [J]. Cell Immunol, 2013, 285(1-2): 62-68.
58
Ezzelarab MB, Raich-Regue D, Lu L, et al. Renal allograft survival in nonhuman primates infused with donor antigen-pulsed autologous regulatory dendritic cells[J]. Am J Transplant, 2017, 17(6): 1476-1489.
59
Aiello S, Rocchetta F, Longaretti L, et al. Extracellular vesicles derived from T regulatory cells suppress T cell proliferation and prolong allograft survival[J]. Sci Rep, 2017, 7(1): 11518.
60
Kim S, Lee SA, Yoon H, et al. Exosome-based delivery of super-repressor IκBα ameliorates kidney ischemia-reperfusion injury [J]. Kidney Int, 2021, 100(3): 570-584.
61
Qian Z, Zhang X, Huang J, et al. ROS-responsive MSC-derived exosome mimetics carrying MHY1485 alleviate renal ischemia reperfusion injury through multiple mechanisms[J]. ACS Omega, 2024, 9(23): 24853-24863.
62
Lin J, Lv J, Yu S, et al. Transcript engineered extracellular vesicles alleviate alloreactive dynamics in renal transplantation[J]. Adv Sci (Weinh), 2022, 9(31): e2202633.
63
Tsai HI, Wu Y, Liu X, et al. Engineered small extracellular vesicles as a FGL1/PD-L1 dual-targeting delivery system for alleviating immune rejection[J]. Adv Sci (Weinh), 2022, 9(3): e2102634.
[1] 史学兵, 谢迎东, 谢霓, 徐超丽, 杨斌, 孙帼. 声辐射力弹性成像对不可切除肝细胞癌门静脉癌栓患者放射治疗效果的评价[J/OL]. 中华医学超声杂志(电子版), 2024, 21(08): 778-784.
[2] 曹琮沅, 黄烁金, 何倩婷, 王安训. 平阳霉素复合剂治疗口腔颌面部脉管畸形的有效性和安全性[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 368-374.
[3] 李华志, 曹广, 刘殿刚, 张雅静. 不同入路下行肝切除术治疗原发性肝细胞癌的临床对比[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 52-55.
[4] 陈浩, 王萌. 胃印戒细胞癌的临床病理特征及治疗选择的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 108-111.
[5] 许月芳, 刘旺, 曾妙甜, 郭宇姝. 多粘菌素B和多粘菌素E治疗外科多重耐药菌感染临床疗效及安全性分析[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 700-703.
[6] 刘柏隆, 周祥福. 压力性尿失禁阶梯治疗的项目介绍[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 125-125.
[7] 刘柏隆. 女性压力性尿失禁阶梯治疗之手术治疗方案选择[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2025, 19(01): 126-126.
[8] 石海波, 赵旭东, 王聪, 曲巍. 气肿性肾盂肾炎、气肿性膀胱炎并脓毒性休克一例报道并文献复习[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 644-647.
[9] 林逸, 钟文龙, 李锴文, 何旺, 林天歆. 广东省医学会泌尿外科疑难病例多学科会诊(第15期)——转移性膀胱癌的综合治疗[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 648-652.
[10] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[11] 国文凯, 纪鹏程, 毕靖茹, 谢院生. IgA 肾病的十种治疗措施[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 327-333.
[12] 崔军威, 蔡华丽, 胡艺冰, 胡慧. 亚甲蓝联合金属定位夹及定位钩针标记在乳腺癌辅助化疗后评估腋窝转移淋巴结的临床应用价值探究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 625-632.
[13] 王誉英, 刘世伟, 王睿, 曾娅玲, 涂禧慧, 张蒲蓉. 老年乳腺癌新辅助治疗病理完全缓解的预测因素分析[J/OL]. 中华临床医师杂志(电子版), 2024, 18(07): 641-646.
[14] 张平骥, 徐钰, 李天水, 庞文翼, 符师宁, 张梦圆. 重症患者镇静治疗现状及期望的调查研究[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 562-567.
[15] 王昌前, 林婷婷, 宁雨露, 王颖杰, 谭文勇. 光免疫治疗在肿瘤领域的临床应用新进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(06): 575-583.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?