切换至 "中华医学电子期刊资源库"

中华移植杂志(电子版) ›› 2024, Vol. 18 ›› Issue (03) : 186 -192. doi: 10.3877/cma.j.issn.1674-3903.2024.03.008

综述

细胞外囊泡在肾移植诊断和治疗中的研究进展
吕军好1, 林锦雯1, 张心怡1, 陈江华1,()   
  1. 1. 310006 杭州,浙江大学医学院附属第一医院肾脏病中心 浙江省肾脏病防治技术研究重点实验室 国家临床重点专科 浙江大学肾脏病研究所 浙江省肾脏与泌尿系统疾病临床医学研究中心
  • 收稿日期:2024-06-15 出版日期:2024-06-25
  • 通信作者: 陈江华
  • 基金资助:
    浙江省科技厅"领雁"研发公关计划项目(2023C03074); 国家自然科学基金(U21A20350)

The progress of extracellular vesicle in diagnosis and treatment of kidney transplantation

Junhao Lyu1, Jinwen Lin1, Xinyi Zhang1, Jianghua Chen1,()   

  1. 1. Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province; National Key Clinical Department of Kidney Diseases; Institute of Nephrology, Zhejiang University; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou 310006, China
  • Received:2024-06-15 Published:2024-06-25
  • Corresponding author: Jianghua Chen
引用本文:

吕军好, 林锦雯, 张心怡, 陈江华. 细胞外囊泡在肾移植诊断和治疗中的研究进展[J]. 中华移植杂志(电子版), 2024, 18(03): 186-192.

Junhao Lyu, Jinwen Lin, Xinyi Zhang, Jianghua Chen. The progress of extracellular vesicle in diagnosis and treatment of kidney transplantation[J]. Chinese Journal of Transplantation(Electronic Edition), 2024, 18(03): 186-192.

细胞外囊泡(EV)是细胞释放到周围环境中的脂质双分子层囊泡,具有一系列信号传导作用,参与多种生理和病理过程。近年来,越来越多的研究发现EV作为疾病生物标志物和治疗载体的巨大潜能。在肾移植领域,研究显示尿液EV可以反映移植肾的病理生理状态,被认为具有潜在的诊断价值。此外,部分细胞来源的EV在移植免疫调节方面具有一定的治疗特性,凭借免疫原性低、具有靶向性和工程化潜能等优势,有望成为新一代的药物递送载体。本文综述EV的分类、分离和表征及其在肾移植诊断和治疗中的研究进展。

Extracellular vesicle (EV) is a lipid-bilayer particle released by cells into the extracellular environment with a range of signaling roles involved in a variety of physiological and pathological processes. Recently, increasing studies have found that EV has great potential as disease biomarker and therapeutic carrier. In the field of renal transplantation, researches have shown that urinary EV could reflect the pathophysiological status of the allograft and has been considered as a potential non-invasive diagnostic and prognostic biomarker. In addition, EV derived from certain cells has therapeutic properties of immunomodulation in transplantation and is proposed as an upcoming drug delivery platform with advantages of low immunogenicity, high tissue targeting and engineering potential. Therefore, this review described the classification, isolation and characterization of EV and introduced the research progress of EV in diagnosis and treatment of renal transplantation.

1
Zhao J, Zhu W, Mao Y, et al. Unignored intracellular journey and biomedical applications of extracellular vesicles[J]. Adv Drug Deliv Rev, 2024: 115388.
2
Ko SY, Lee W, Naora H. Harnessing microRNA-enriched extracellular vesicles for liquid biopsy[J]. Front Mol Biosci, 2024, 11: 1356780.
3
王玺惠,陈依,俞卫锋. 凋亡胞外囊泡在炎症与肿瘤发生、发展中的作用研究进展[J]. 浙江医学202345(10): 1116-1120.
4
史婷婷,张润兵,伍杨,等. 不同来源的细胞外囊泡在肝细胞癌发生进展中的作用[J]. 临床肝胆病杂志202440(6): 1264-1268.
5
Gołębiewska JE, Wardowska A, Pietrowska M, et al. Small extracellular vesicles in transplant rejection [J]. Cells, 2021, 10(11): 10112989
6
Zeng F, Chen Z, Chen R, et al. Graft-derived extracellular vesicles transported across subcapsular sinus macrophages elicit B cell alloimmunity after transplantation[J]. Sci Transl Med, 2021, 13(585): eabb0122.
7
Ashcroft J, Leighton P, Elliott TR, et al. Extracellular vesicles in kidney transplantation: a state-of-the-art review [J]. Kidney Int, 2022, 101(3): 485-497.
8
Welsh JA, Goberdhan DCI, O′driscoll L, et al. Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches [J]. J Extracell Vesicles, 2024, 13(2): e12404.
9
Kalluri R, Lebleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478): eaau6977.
10
Caruso S, Poon IKH. Apoptotic cell-derived extracellular vesicles: more than just debris[J]. Front Immunol, 2018, 9:1486.
11
Gardiner C, Di Vizio D, Sahoo S, et al. Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey[J]. J Extracell Vesicles, 2016, 5:32945.
12
Monguio-Tortajada M, Galvez-Monton C, Bayes-Genis A, et al. Extracellular vesicle isolation methods: rising impact of size-exclusion chromatography[J]. Cell Mol Life Sci, 2019, 76(12): 2369-2382.
13
Sidhom K, Obi PO, Saleem A. A review of exosomal isolation methods: is size exclusion chromatography the best option?[J]. Int J Mol Sci, 2020, 21(18): 21186466.
14
Koiffman N, Biran I, Aharon A, et al. A direct-imaging cryo-EM study of shedding extracellular vesicles from leukemic monocytes [J]. J Struct Biol, 2017, 198(3): 177-185.
15
Thery C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines[J]. J Extracell Vesicles, 2018, 7(1): 1535750.
16
Cuadrado-Payan E, Ramirez-Bajo MJ, Banon-Maneus E, et al. Physiopathological role of extracellular vesicles in alloimmunity and kidney transplantation and their use as biomarkers[J]. Front Immunol, 2023, 14:1154650.
17
Abinti M, Favi E, Alfieri CM, et al. Update on current and potential application of extracellular vesicles in kidney transplantation[J]. Am J Transplant, 2023, 23(11): 1673-1693.
18
Turco AE, Lam W, Rule AD, et al. Specific renal parenchymal-derived urinary extracellular vesicles identify age-associated structural changes in living donor kidneys[J]. J Extracell Vesicles, 2016, 5:29642.
19
Oshikawa-Hori S, Yokota-Ikeda N, Sonoda H, et al. Reduced urinary release of AQP1- and AQP2-bearing extracellular vesicles in patients with advanced chronic kidney disease[J]. Physiol Rep, 2021, 9(17): e15005.
20
Ines Lozano-Ramos S, Bancu I, Carreras-Planella L, et al. Molecular profile of urine extracellular vesicles from normo-functional kidneys reveal minimal differences between living and deceased donors [J]. BMC Nephrol, 2018, 19(1):189.
21
Gremmels H, De Jong OG, Toorop RJ, et al. The small RNA repertoire of small extracellular vesicles isolated from donor kidney preservation fluid provides a source for biomarker discovery for organ quality and posttransplantation graft function[J]. Transplant Direct, 2019, 5(9): e484.
22
Alvarez S, Suazo C, Boltansky A, et al. Urinary exosomes as a source of kidney dysfunction biomarker in renal transplantation[J]. Transplant Proc, 2013, 45(10): 3719-3723.
23
Dimuccio V, Ranghino A, Barbato LP, et al. Urinary CD133 extracellular vesicles are decreased in kidney transplanted patients with slow graft function and vascular damage[J]. PLoS One, 2014, 9(8):e104490.
24
Asvapromtada S, Sonoda H, Kinouchi M, et al. Characterization of urinary exosomal release of aquaporin-1 and-2 after renal ischemia-reperfusion in rats[J]. Am J Physiol Renal Physiol, 2018, 314(4): F584-F601.
25
Wang J, Li X, Wu X, et al. Expression profiling of exosomal miRNAs derived from the peripheral blood of kidney recipients with DGF using high-throughput sequencing[J]. Biomed Res Int, 2019, 2019: 1759697.
26
Al-Nedawi K, Haas-Neill S, Gangji A, et al. Circulating microvesicle protein is associated with renal transplant outcome[J]. Transpl Immunol, 2019, 55: 101210.
27
Rutman AK, Negi S, Saberi N, et al. Extracellular vesicles from kidney allografts express miR-218-5p and alter Th17/Treg ratios[J]. Front Immunol, 2022, 13:784374.
28
Park J, Lin HY, Assaker JP, et al. Integrated kidney exosome analysis for the detection of kidney transplant rejection[J]. Acs Nano, 2017, 11(11): 11041-11046.
29
Takada Y, Kamimura D, Jiang JJ, et al. Increased urinary exosomal SYT17 levels in chronic active antibody-mediated rejection after kidney transplantation via the IL-6 amplifier[J]. Int Immunol, 2020, 32(10): 653-662.
30
El Fekih R, Hurley J, Tadigotla V, et al. Discovery and validation of a urinary exosome mRNA signature for the diagnosis of human kidney transplant rejection[J]. J Am Soc Nephrol, 2021, 32(4): 994-1004.
31
Lim JH, Lee CH, Kim KY, et al. Novel urinary exosomal biomarkers of acute T cell-mediated rejection in kidney transplant recipients: A cross-sectional study[J]. PloS One, 2018, 13(9): e0204204.
32
Sigdel TK, Ng YW, Lee S, et al. Perturbations in the urinary exosome in transplant rejection[J]. Front Med (Lausanne), 2014, 1:57.
33
Tower CM, Reyes M, Nelson K, et al. Plasma C4d endothelial microvesicles increase in acute antibody-mediated rejection[J]. Transplantation, 2017, 101(9): 2235-2243.
34
Zhang H, Huang E, Kahwaji J, et al. Plasma exosomes from HLA-sensitized kidney transplant recipients contain mRNA transcripts which predict development of antibody-mediated rejection[J]. Transplantation, 2017, 101(10): 2419-2428.
35
Sharma M, Ravichandran R, Bansal S, et al. Tissue-associated self-antigens containing exosomes: role in allograft rejection[J]. Hum Immunol, 2018, 79(9): 653-658.
36
Saejong S, Townamchai N, Somparn P, et al. MicroRNA-21 in plasma exosome, but not from whole plasma, as a biomarker for the severe interstitial fibrosis and tubular atrophy (IF/TA) in post-renal transplantation[J]. Asian Pac J Allergy Immunol, 2022, 40(1): 94-102.
37
Chen Y, Han X, Sun Y, et al. A circulating exosomal microRNA panel as a novel biomarker for monitoring post-transplant renal graft function[J]. J Cell Mol Med, 2020, 24(20): 12154-12163.
38
Carreras-Planella L, Cucchiari D, Canas L, et al. Urinary vitronectin identifies patients with high levels of fibrosis in kidney grafts[J]. J Nephrol, 2021, 34(3): 861-874.
39
雷嘉豪,缪炳文,缪辉来. 细胞外囊泡与非编码RNA在肝缺血再灌注损伤中作用的研究进展[J]. 肝胆胰外科杂志202335(7):439-443.
40
Lazana I, Vassilopoulos G. A 'waste product' to save the day in the field of transplantation: the evolving potential of extracellular vesicles[J]. Immunology, 2022, 167(2): 154-164.
41
Lindoso RS, Collino F, Bruno S, et al. Extracellular vesicles released from mesenchymal stromal cells modulate miRNA in renal tubular cells and inhibit ATP depletion injury[J]. Stem Cells Dev, 2014, 23(15): 1809-1819.
42
Zou XY, Zhang GY, Cheng ZL, et al. Microvesicles derived from human Wharton′s Jelly mesenchymal stromal cells ameliorate renal ischemia-reperfusion injury in rats by suppressing CX3CL1[J]. Stem Cell Res Ther, 2014, 5(2): 40.
43
Vinas JL, Burger D, Zimpelmann J, et al. Transfer of microRNA-486-5p from human endothelial colony forming cell-derived exosomes reduces ischemic kidney injury[J]. Kidney Int, 2016, 90(6): 1238-1250.
44
Pang P, Abbott M, Chang SL, et al. Human vascular progenitor cells derived from renal arteries are endothelial-like and assist in the repair of injured renal capillary networks[J]. Kidney Int, 2017, 91(1): 129-143.
45
Dominguez JH, Liu Y, Gao H, et al. Renal tubular cell-derived extracellular vesicles accelerate the recovery of established renal ischemia reperfusion injury[J]. J Am Soc Nephrol, 2017, 28(12): 3533-3544.
46
Pan W, Li S, Li K, et al. Mesenchymal stem cells and extracellular vesicles: therapeutic potential in organ transplantation[J]. Stem Cells Int, 2024, 2024:2043550.
47
Gregorini M, Corradetti V, Pattonieri EF, et al. Perfusion of isolated rat kidney with mesenchymal stromal cells/extracellular vesicles prevents ischaemic injury[J]. J Cell Mol Med, 2017, 21(12): 3381-3393.
48
Grignano MA, Bruno S, Viglio S, et al. CD73-adenosinergic axis mediates the protective effect of extracellular vesicles derived from mesenchymal stromal cells on ischemic renal damage in a rat model of donation after circulatory death[J]. Int J Mol Sci, 2022, 23(18): 10681.
49
Rampino T, Gregorini M, Germinario G, et al. Extracellular vesicles derived from mesenchymal stromal cells delivered during hypothermic oxygenated machine perfusion repair ischemic/reperfusion damage of kidneys from extended criteria donors[J]. Biology, 2022, 11(3): 350.
50
Burrello J, Monticone S, Gai C, et al. Stem cell-derived extracellular vesicles and immune-modulation [J]. Front Cell Dev Biol, 2016, 4: 83.
51
Koch M, Lemke A, Lange C. Extracellular Vesicles from MSC modulate the immune response to renal allografts in a MHC disparate rat model [J]. Stem Cells Int, 2015, 2015: 486141.
52
Wu XQ, Yan TZ, Wang ZW, et al. BM-MSCs-derived microvesicles promote allogeneic kidney graft survival through enhancing micro-146a expression of dendritic cells[J]. Immunol Lett, 2017, 191:55-62.
53
Jose Ramirez-Bajo M, Rovira J, Lazo-Rodriguez M, et al. Impact of mesenchymal stromal cells and their extracellular vesicles in a rat model of kidney rejection[J]. Front Cell Dev Biol, 2020, 8: 10.
54
Fang Y, Bouari S, Hoogduijn MJ, et al. Therapeutic efficacy of extracellular vesicles to suppress allograft rejection in preclinical kidney transplantation models: a systematic review and meta-analysis[J]. Transplant Rev (Orlando), 2022, 36(4): 100714.
55
Peche H, Renaudin K, Beriou G, et al. Induction of tolerance by exosomes and short-term immunosuppression in a fully MHC-mismatched rat cardiac allograft model[J]. Am J Transplant, 2006, 6(7): 1541-1550.
56
Pang XL, Wang ZG, Liu L, et al. Immature dendritic cells derived exosomes promotes immune tolerance by regulating T cell differentiation in renal transplantation[J]. Aging (Albany NY), 2019, 11(20): 8911-8924.
57
Yu X, Huang C, Song B, et al. CD4 CD25 regulatory T cells-derived exosomes prolonged kidney allograft survival in a rat model [J]. Cell Immunol, 2013, 285(1-2): 62-68.
58
Ezzelarab MB, Raich-Regue D, Lu L, et al. Renal allograft survival in nonhuman primates infused with donor antigen-pulsed autologous regulatory dendritic cells[J]. Am J Transplant, 2017, 17(6): 1476-1489.
59
Aiello S, Rocchetta F, Longaretti L, et al. Extracellular vesicles derived from T regulatory cells suppress T cell proliferation and prolong allograft survival[J]. Sci Rep, 2017, 7(1): 11518.
60
Kim S, Lee SA, Yoon H, et al. Exosome-based delivery of super-repressor IκBα ameliorates kidney ischemia-reperfusion injury [J]. Kidney Int, 2021, 100(3): 570-584.
61
Qian Z, Zhang X, Huang J, et al. ROS-responsive MSC-derived exosome mimetics carrying MHY1485 alleviate renal ischemia reperfusion injury through multiple mechanisms[J]. ACS Omega, 2024, 9(23): 24853-24863.
62
Lin J, Lv J, Yu S, et al. Transcript engineered extracellular vesicles alleviate alloreactive dynamics in renal transplantation[J]. Adv Sci (Weinh), 2022, 9(31): e2202633.
63
Tsai HI, Wu Y, Liu X, et al. Engineered small extracellular vesicles as a FGL1/PD-L1 dual-targeting delivery system for alleviating immune rejection[J]. Adv Sci (Weinh), 2022, 9(3): e2102634.
[1] 陆婷, 范晴敏, 王洁, 万晓静, 许春芳, 董凤林. 超声引导下经皮穿刺置管引流对重症急性胰腺炎的疗效及应用时机的选择[J]. 中华医学超声杂志(电子版), 2024, 21(05): 511-516.
[2] 王宇, 徐芳泉, 周旋, 姚晓峰, 李强. 不断提高分化型甲状腺癌根治性切除规范化[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 473-476.
[3] 孙辉, 李长霖. 分化型甲状腺癌根治性切除术中的关键考量与策略[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 477-481.
[4] 张腾花, 尚培中, 王晓梅, 李晓武, 王金, 苗建军, 刘冰. 外伤性脾破裂三阶梯分层治疗策略[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 510-512.
[5] 高建新, 王啸飞, 于淼, 路夷平. 局部进展期直肠癌新辅助治疗后行ISR术远切缘距离的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 539-543.
[6] 李阳, 董峰, 曾立鹏. 局部进展期直肠癌新辅助治疗后腹腔镜TaTME与TME中的对比研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 547-550.
[7] 刘连新, 孟凡征. 不断提高腹腔镜解剖性肝切除的规范化[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 355-358.
[8] 刘燚隆, 党荣广, 艾蓉, 张凯. 肝硬化合并静脉曲张出血患者内镜治疗后再出血风险的模型建立与验证[J]. 中华消化病与影像杂志(电子版), 2024, 14(04): 336-342.
[9] 胡静, 杨秀锦, 侯志云. HBV感染患者外周血ISGs表达水平变化及其与干扰素治疗疗效的关系[J]. 中华消化病与影像杂志(电子版), 2024, 14(04): 343-347.
[10] 张平骥, 徐钰, 李天水, 庞文翼, 符师宁, 张梦圆. 重症患者镇静治疗现状及期望的调查研究[J]. 中华临床医师杂志(电子版), 2024, 18(06): 562-567.
[11] 王昌前, 林婷婷, 宁雨露, 王颖杰, 谭文勇. 光免疫治疗在肿瘤领域的临床应用新进展[J]. 中华临床医师杂志(电子版), 2024, 18(06): 575-583.
[12] 朱旦华, 卢放根. 以腹水为主要特征的Castleman病16例[J]. 中华临床医师杂志(电子版), 2024, 18(05): 462-473.
[13] 奚培培, 周加军. 慢性肾脏病患者肌少症机制和诊治的研究进展[J]. 中华临床医师杂志(电子版), 2024, 18(05): 491-495.
[14] 温绍敏, 王雅晳, 施依璐, 段莎莎, 云书荣, 张小杉. 靶向超声造影技术在动脉粥样硬化治疗中的应用进展[J]. 中华临床医师杂志(电子版), 2024, 18(05): 496-499.
[15] 孙双权, 孙玮玮, 王勇, 方道成, 温晖. 肾脏混合性上皮和间质肿瘤一例[J]. 中华临床医师杂志(电子版), 2024, 18(05): 512-515.
阅读次数
全文


摘要