切换至 "中华医学电子期刊资源库"

中华移植杂志(电子版) ›› 2018, Vol. 12 ›› Issue (04) : 188 -192. doi: 10.3877/cma.j.issn.1674-3903.2018.04.011

所属专题: 文献

综述

肝脏缺血再灌注损伤分子机制的研究进展
赖金惠1, 刘忠忠1, 李玲1, 钟自彪1, 叶少军1, 王彦峰1, 叶啟发2,()   
  1. 1. 430071 武汉大学中南医院 武汉大学肝胆疾病研究院 武汉大学移植医学中心 移植医学技术湖北省重点实验室
    2. 430071 武汉大学中南医院 武汉大学肝胆疾病研究院 武汉大学移植医学中心 移植医学技术湖北省重点实验室;410013 长沙,中南大学湘雅三医院 国家卫计委移植医学工程技术研究中心
  • 收稿日期:2018-07-24 出版日期:2018-11-25
  • 通信作者: 叶啟发
  • 基金资助:
    国家自然科学基金-新疆联合基金(U1403222)

Advances in molecular mechanisms of liver ischemia reperfusion injury

Chin-Hui Lai1, Zhongzhong Liu1, Ling Li1, Zibiao Zhong1, Shaojun Ye1, Yanfeng Wang1, Qifa Ye2,()   

  1. 1. Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430071, China
    2. Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430071, China; The 3rd Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha 410013, China
  • Received:2018-07-24 Published:2018-11-25
  • Corresponding author: Qifa Ye
  • About author:
    Corresponding author: Ye Qifa, Email:
引用本文:

赖金惠, 刘忠忠, 李玲, 钟自彪, 叶少军, 王彦峰, 叶啟发. 肝脏缺血再灌注损伤分子机制的研究进展[J]. 中华移植杂志(电子版), 2018, 12(04): 188-192.

Chin-Hui Lai, Zhongzhong Liu, Ling Li, Zibiao Zhong, Shaojun Ye, Yanfeng Wang, Qifa Ye. Advances in molecular mechanisms of liver ischemia reperfusion injury[J]. Chinese Journal of Transplantation(Electronic Edition), 2018, 12(04): 188-192.

缺血再灌注损伤(IRI)是肝移植术中不可避免的病理生理变化,是引起肝损伤的一个重要原因,可能导致肝功能衰竭,影响肝移植受者术后的近、远期疗效。参与肝脏缺血再灌注的分子进程复杂多样,所涉及的机制在很大程度上尚未阐明,并不断有新的复杂机制更新。本综述旨在总结一些重要的分子机制在肝脏IRI中的研究进展,同时概述减轻IRI的新兴策略,为临床提高肝移植疗效及移植肝生存率,提供理论和科学依据。

Ischemia reperfusion injury (IRI) represents the main cause of liver damage during surgical procedures such as hepatic resection and liver transplantation, it is an inevitable process of liver transplantation, which may lead to liver function failure and affect the postoperative short-term and long-term efficacy of liver transplant recipients. The molecular mechanisms occurring during hepatic ischemia reperfusion are largely unknown and keeping update. This review aims to summarize some significant molecular mechanisms in research progress of liver IRI. In addition, some new strategies for alleviating IRI are outlined to provide theoretical and scientific basis for clinical improvement of postoperative graft survival rate and liver transplantation curative effect.

1
Ikeda T, Yanaga K, Kishikawa K, et al. Ischemic injury in liver transplantation: difference in injury sites between warm and cold ischemia in rats[J]. Hepatology, 1992, 16(2):454-461.
2
Zhai Y, Busuttil RW, Kupiec-Weglinski JW. Liver ischemia and reperfusion injury: new insights into mechanisms of innate-adaptive immune-mediated tissue inflammation[J]. Am J Transplant, 2011, 11(8): 1563-1569.
3
Zhai Y, Petrowsky H, Hong JC, et al. Ischaemia-reperfusion injury in liver transplantation-from bench to bedside[J]. Nat Rev Gastroenterol Hepatol, 2013, 10(2): 79-89.
4
Lentsch AB, Kato A, Yoshidome H, et al. Inflammatory mechanisms and therapeutic strategies for warm hepatic ischemia/reperfusion injury[J]. Hepatology, 2000, 32(2):169-173.
5
Tsung A, Klune JR, Zhang X, et al. HMGB1 release induced by liver ischemia involves Toll-like receptor 4 dependent reactive oxygen species production and calcium-mediated signaling[J]. J Exp Med, 2007, 204(12):2913-2923.
6
Jaeschke H. Mechanisms of reperfusion injury after warm ischemia of the liver[J]. J Hepatobiliary Pancreat Surg, 1998, 5(4):402-408.
7
Bahde R, Spiegel HU. Hepatic ischaemia-reperfusion injury from bench to bedside[J]. Br J Surg, 2010, 97(10):1461-1475.
8
Jaeschke H. Reactive oxygen and mechanisms of inflammatory liver injury: Present concepts[J]. J Gastroenterol Hepatol, 2011, 26(Suppl 1):173-179.
9
Hide D, Ortega-Ribera M, Garcia-Pagan JC, et al. Effects of warm ischemia and reperfusion on the liver microcirculatory phenotype of rats: underlying mechanisms and pharmacological therapy[J]. Sci Rep, 2016, 6:22107.
10
Csak T, Velayudham A, Hritz I, et al. Deficiency in myeloid differentiation factor-2 and toll-like receptor 4 expression attenuates nonalcoholic steatohepatitis and fibrosis in mice[J]. Am J Physiol Gastrointest Liver Physiol, 2011, 300(3):G433-G441.
11
Nayak L, Lin Z, Jain MK. "Go with the flow" :how Kruppel-like factor 2 regulates the vasoprotective effects of shear stress[J]. Antioxid Redox Signal, 2011, 15(5):1449-1461.
12
Gracia-Sancho J, Villarreal G Jr, Zhang Y, et al. Flow cessation triggers endothelial dysfunction during organ cold storage conditions: strategies for pharmacologic intervention[J]. Transplantation, 2010, 90(2):142-149.
13
Liu Z, Zhang X, Xiao Q, et al. Pretreatment donors after circulatory death with simvastatin alleviates liver ischemia reperfusion injury through a KLF2-dependent mechanism in rat[J]. Oxid Med Cell Longev, 2017:3861914.
14
Klune JR, Tsung A. Molecular biology of liver ischemia/reperfusion injury: established mechanisms and recent advancements[J]. Surg Clin North Am, 2010, 90(4):665-677.
15
Tsung A, Sahai R, Tanaka H, et al. The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion[J]. J Exp Med, 2005, 201(7):1135- 1143.
16
Cursio R, Colosetti P, Gugenheim J. Gugenheim, Autophagy and liver ischemia-reperfusion injury[J]. Biomed Res Int, 2015:417590.
17
Chouchani ET, Pell VR, James AM, et al. A unifying mechanism for mitochondrial superoxide production during ischemia-reperfusion injury[J]. Cell Metab, 2016, 23(2):254-263.
18
Reddy NM, Kleeberger SR, Kensler TW, et al. Correction: disruption of Nrf2 impairs the resolution of hyperoxia-induced acute lung injury and inflammation in mice[J]. J Immunol, 2017, 198(9):3755.
19
Huang J, Yue S, Ke B, et al. Nuclear factor erythroid 2-related factor 2 regulates toll-like receptor 4 innate responses in mouse liver ischemia-reperfusion injury through Akt-forkhead box protein O1 signaling network[J]. Transplantation, 2014, 98(7):721-728.
20
Sun J, Wu Q, Sun H, et al. Inhibition of histone deacetylase by butyrate protects rat liver from ischemic reperfusion injury[J]. Int J Mol Sci, 2014, 15(11):21069-21079.
21
Kato H, Kuriyama N, Duarte S, et al. MMP-9 deficiency shelters endothelial PECAM-1 expression and enhances regeneration of steatotic livers after ischemia and reperfusion injury[J]. J Hepatol, 2014, 60(5):1032-1039.
22
Zhang C, Liao Y, Li Q, et al. Recombinant adiponectin ameliorates liver ischemia reperfusion injury via activating the AMPK/eNOS pathway[J]. PLoS One, 2013, 8(6):e66382.
23
Massip-Salcedo M, Zaouali MA, Padrissa-Altés S, et al. Activation of peroxisome proliferator-activated receptor-alpha inhibits the injurious effects of adiponectin in rat steatotic liver undergoing ischemia-reperfusion[J]. Hepatology, 2008, 47(2):461-472.
24
Elias-Miró M, Massip-Salcedo M, Raila J, et al. Retinol binding protein 4 and retinol in steatotic and nonsteatotic rat livers in the setting of partial hepatectomy under ischemia/reperfusion[J]. Liver Transpl, 2012, 18(10):1198-1208.
25
Elias-Miró M, Mendes-Braz M, Cereijo R, et al. Resistin and visfatin in steatotic and non-steatotic livers in the setting of partial hepatectomy under ischemia-reperfusion[J]. J Hepatol, 2014, 60(1): 87-95.
26
Zhang XJ, Cheng X, Yan ZZ, et al. An ALOX12-12-HETE-GPR31 signaling axis is a key mediator of hepatic ischemia-reperfusion injury[J]. Nat Med, 2018, 24(1):73-83.
27
Shen XD, Ke B, Zhai Y, et al. Absence of toll-like receptor 4 (TLR4) signaling in the donor organ reduces ischemia and reperfusion injury in a murine liver transplantation model[J]. Liver Transpl, 2007, 13(10):1435-1443.
28
Erridge C. Endogenous ligands of TLR2 and TLR4: agonists or assistants?[J]. J Leukoc Biol, 2010, 87(6):989-999.
29
Tsung A, Klune JR, Zhang X, et al. HMGB1 release induced by liver ischemia involves Toll-like receptor 4 dependent reactive oxygen species production and calcium-mediated signaling[J]. J Exp Med, 2007, 204(12):2913-2923.
30
Dhupar R, Klune JR, Evankovich J, et al. Interferon regulatory factor 1 mediates acetylation and release of high mobility group box 1 from hepatocytes during murine liver ischemia-reperfusion injury[J]. Shock, 2011, 35(3):293-301.
31
Schiraldi M, Raucci A, Muñoz LM, et al. HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4[J]. J Exp Med, 2012, 209(3):551-563.
32
McDonald B, Pittman K, Menezes GB, et al. Intravascular danger signals guide neutrophils to sites of sterile inflammation[J]. Science, 2010, 330(6002):362-366.
33
Zhu P, Duan L, Chen J, et al. Gene silencing of NALP3 protects against liver ischemia-reperfusion injury in mice[J]. Hum Gene Ther, 2011, 22(7):853-864.
34
Cursio R, Colosetti P, Gugenheim J. Autophagy and liver ischemia-reperfusion injury[J]. Biomed Res Int, 2015:417590.
35
Gracia-Sancho J, Guixé-Muntet S, Hide D, et al. Modulation of autophagy for the treatment of liver diseases[J]. Expert Opin Investig Drugs, 2014, 23(7):965-977.
36
Minor T, Stegemann J, Hirner A, et al. Impaired autophagic clearance after cold preservation of fatty livers correlates with tissue necrosis upon reperfusion and is reversed by hypothermic reconditioning[J]. Liver Transpl, 2009, 15(7):798-805.
37
Guixé-Muntet S, de Mesquita FC, Vila S, et al. Cross-talk between autophagy and KLF2 determines endothelial cell phenotype and microvascular function in acute liver injury[J]. J Hepatol, 2017, 66(1):86-94.
38
Farid WR, Pan Q, van der Meer AJ, et al. Hepatocyte-derived microRNAs as serum biomarkers of hepatic injury and rejection after liver transplantation[J]. Liver Transpl, 2012, 18(3):290-297.
39
Kim KH, Dhupar R, Ueki S, et al. Donor graft interferon regulatory factor-1 gene transfer worsens liver transplant ischemia/reperfusion injury[J]. Surgery, 2009, 146(2):181-189.
40
Yokota S, Yoshida O, Dou L, et al. IRF-1 promotes liver transplant ischemia/reperfusion injury via hepatocyte IL-15/IL-15Ralpha production[J]. J Immunol, 2015, 194(12):6045-6056.
41
Ueki S, Castellaneta A, Yoshida O, et al. Hepatic B7 homolog 1 expression is essential for controlling cold ischemia/reperfusion injury after mouse liver transplantation[J]. Hepatology, 2011, 54(1):216-228.
[1] 丁建民, 秦正义, 张翔, 周燕, 周洪雨, 王彦冬, 经翔. 超声造影与普美显磁共振成像对具有高危因素的≤3 cm肝结节进行LI-RADS分类诊断的前瞻性研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 930-938.
[2] 吕衡, 董理聪, 谢海琴, 赵卓非, 刘俐, 孙德胜. 基于CT-超声对照的肝脏局灶性病变超声漏诊状况分析:一项单中心横断面质量控制调查报告[J]. 中华医学超声杂志(电子版), 2023, 20(07): 712-716.
[3] 李坤河, 寇萌佳, 邝立挺. 肝移植术后二次气管插管的危险因素及预测模型的建立[J]. 中华普通外科学文献(电子版), 2023, 17(05): 366-371.
[4] 严庆, 刘颖, 邓斐文, 陈焕伟. 微血管侵犯对肝癌肝移植患者生存预后的影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 624-629.
[5] 廖梅, 张红君, 金洁玚, 吕艳, 任杰. 床旁超声造影对肝移植术后早期肝动脉血栓的诊断价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 630-634.
[6] 李秉林, 吕少诚, 潘飞, 姜涛, 樊华, 寇建涛, 贺强, 郎韧. 供肝灌注液病原菌与肝移植术后早期感染的相关性分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 656-660.
[7] 吕垒, 冯啸, 何凯明, 曾凯宁, 杨卿, 吕海金, 易慧敏, 易述红, 杨扬, 傅斌生. 改良金氏评分在儿童肝豆状核变性急性肝衰竭肝移植手术时机评估中价值并文献复习[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 661-668.
[8] 韩宇, 张武, 李安琪, 陈文颖, 谢斯栋. MRI肝脏影像报告和数据系统对非肝硬化乙肝患者肝细胞癌的诊断价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 669-673.
[9] 唐灿, 李向阳, 秦浩然, 李婧, 王天云, 柯阳, 朱红. 原发性肝脏神经内分泌肿瘤单中心12例诊治与疗效分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 674-680.
[10] 王孟龙. 肿瘤生物学特征在肝癌肝移植治疗中的意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 490-494.
[11] 李双喜, 胡宗凯, 赵静, 黄洁. 肝血管瘤治疗指征及治疗策略[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 504-510.
[12] 关明函, 薛志强. 右美托咪定改善大鼠脑缺血再灌注后脑损伤的研究[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 270-276.
[13] 王淑友, 宋晓晶, 贾术永, 王广军, 张维波. 肝脏去唾液酸糖蛋白受体靶向活体荧光成像评估酒精性肝损伤肝脏功能的研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 443-446.
[14] 吴钰娴, 冯亚园, 霍雷, 贾宁阳, 张娟. 原发性肝脏淋巴瘤的影像学诊断价值研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 349-353.
[15] 张敏洁, 张小杉, 段莎莎, 施依璐, 赵捷, 白天昊, 王雅晳. 氢气治疗心肌缺血再灌注损伤的作用机制及展望[J]. 中华临床医师杂志(电子版), 2023, 17(06): 744-748.
阅读次数
全文


摘要