切换至 "中华医学电子期刊资源库"

中华移植杂志(电子版) ›› 2020, Vol. 14 ›› Issue (05) : 319 -323. doi: 10.3877/cma.j.issn.1674-3903.2020.05.012

所属专题: 文献

综述

活性氧簇在肝脏缺血再灌注损伤中的作用研究进展
曾嘉珉1, 孙煦勇2,(), 董建辉3   
  1. 1. 530001 南宁,广西中医药大学研究生院
    2. 530007 南宁,广西医科大学第二附属医院器官移植科
    3. 530021 南宁,中国人民解放军联勤保障部队第九二三医院器官移植科 广西移植医学重点实验室 广西移植医学工程技术研究中心
  • 收稿日期:2020-11-12 出版日期:2020-10-20
  • 通信作者: 孙煦勇
  • 基金资助:
    国家自然科学基金(81670596)

Advance in study on reactive oxygen species mediated hepatic ischemia-reperfusion injury mechanisms

Jiamin Zeng1, Xuyong Sun2,(), Jianhui Dong3   

  1. 1. Graduate school, Guangxi University of Chinese Medicine, Nanning 530001, China
    2. Department of Organ Transplantation, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, China
    3. Institute of Transplant Medicine, No.923 Hospital of Chinese People′s Liberation Army, Guangxi Key Laboratory for Transplantation Medicine, Guangxi Transplantation Medicine Research Center of Engineering Technology, Nanning 530021, China
  • Received:2020-11-12 Published:2020-10-20
  • Corresponding author: Xuyong Sun
引用本文:

曾嘉珉, 孙煦勇, 董建辉. 活性氧簇在肝脏缺血再灌注损伤中的作用研究进展[J]. 中华移植杂志(电子版), 2020, 14(05): 319-323.

Jiamin Zeng, Xuyong Sun, Jianhui Dong. Advance in study on reactive oxygen species mediated hepatic ischemia-reperfusion injury mechanisms[J]. Chinese Journal of Transplantation(Electronic Edition), 2020, 14(05): 319-323.

肝脏缺血再灌注损伤(HIRI)是一种复杂的,涉及氧化应激、炎症反应和钙超载等多种机制的病理过程。活性氧簇在HIRI过程中扮演了重要角色,既往研究多认为活性氧簇在HIRI过程中发挥促损伤作用,然而随着预缺血干预研究的深入,活性氧簇可能通过低氧诱导因子、磷脂酰肌醇3-激酶/蛋白激酶B及丝裂原活化蛋白激酶等通路参与了对肝细胞的保护。本文对活性氧簇在HIRI中的促损伤及潜在保护作用进行综述。

Hepatic ischemia-reperfusion injury(HIRI)is a complex pathophysiological process involving oxidative stress, inflammatory response, calcium overload and other mechanisms. Reactive oxygen species play an important role in all these process of HIRI. However, with the development in the study of preischemia intervention, reactive oxygen species may be involved in the protection of hepatocytes through hypoxia inducible factor, phosphoinositide 3-kinase/protein kinase B pathway and mitogen-activated protein kinases pathways. This paper reviews the damage and potential protection of reactive oxygen species in HIRI.

1
卢先明,张水军. 肝脏巨噬细胞极化在肝脏缺血再灌注损伤中的作用及机制研究进展[J]. 河南医学研究,2019, 28(11): 2109-2111.
2
Dar WA, Sullivan E, Bynon JS, et al. Ischaemia reperfusion injury in liver transplantation: cellular and molecular mechanisms[J]. Liver Int, 2019, 39(5): 788-801.
3
Eltzschig HK, Eckle T. Ischemia and reperfusion-from mechanism to translation[J]. Nat Med, 2011, 17(11): 1391-1401.
4
Jaeschke H, Woolbright BL. Current strategies to minimize hepatic ischemia-reperfusion injury by targeting reactive oxygen species[J]. Transplant Rev (Orlando), 2012, 26(2): 103-114.
5
Go KL, Sooyeon L, Ivan Z, et al. Mitochondrial dysfunction and autophagy in hepatic ischemia/reperfusion injury[J]. Biomed Res Int, 2015: 183469.
6
Cursio R, Colosetti P, Gugenheim J. Autophagy and liver ischemia-reperfusion injury[J]. Biomed Res Int, 2015: 417590.
7
Brand MD. The sites and topology of mitochondrial superoxide production[J]. Exp Gerontol, 2010, 45(7-8): 466-472.
8
Hanukoglu I, Dar WA, Sullivan E, et al. Ischaemia reperfusion injury in liver transplantation: Cellular and molecular mechanisms[J]. Liver Int, 2019, 39(5): 788-801.
9
Cheung EC, De-Nicola GM, Nixon C, et al. Dynamic ROS control by TIGAR regulates the initiation and progression of pancreatic cancer[J]. Cancer cell, 2020, 37(2): 168-182.
10
Bagati A, Moparthy S, Fink EE, et al. KLF9-dependent ROS regulate melanoma progression in stage-specific manner[J]. Oncogene, 2019, 38(19): 3585-3597.
11
González-Flecha B, Cutrin JC, Boveris A. Time course and mechanism of oxidative stress and tissue damage in rat liver subjected to in vivo ischemia-reperfusion[J]. J Clin Invest, 1993, 91(2): 456-464.
12
Adkison D, Höllwarth ME, Benoit JN, et al. Role of free radicals in ischemia-reperfusion injury to the liver[J]. Acta Physiol Scand Suppl, 1986, 548:101-107.
13
Lehnert M, Arteel GE, Smutney OM, et al. Dependence of liver injury after hemorrhage/resuscitation in mice on NADPH oxidase-derived superoxide[J]. Shock, 2003, 19(4): 345-351.
14
Vollmar B, Glasz J, Leiderer R, et al. Hepatic microcirculatory perfusion failure is a determinant of liver dysfunction in warm ischemia-reperfusion[J]. Am J Pathol, 1994, 145(6): 1421-1431.
15
De Pascali F, Hemann C, Samons K, et al.Hypoxia and reoxygenation induce endothelial nitric oxide synthase uncoupling in endothelial cells through tetrahydrobiopterin depletion and S-glutathionylation[J]. Biochemistry, 2014, 53(22): 3679-3688.
16
汪艳. 肿瘤坏死因子、白细胞介素-17参与炎性小体介导的肝脏无菌性炎症和纤维化发生[J]. 肝脏,2018, 23(5): 377-378.
17
王建珍,张斌,王哲,等. 18Nrf2/ARE信号通路在肢体缺血后处理减轻大鼠肝脏缺血再灌注损伤中的作用[J]. 宁夏医科大学学报,2018, 40(10): 1117-1120.
18
Chandel NS, Trzyna WC, McClintock DS, et al. Role of oxidants in NF-kappa B activation and TNF-alpha gene transcription induced by hypoxia and endotoxin[J]. J Immunol, 2000, 165(2): 1013-1021.
19
Latanich CA, Toledo-Pereyra LH. Searching for NF-kappaB-based treatments of ischemia reperfusion injury[J]. J Invest Surg, 2009, 22(4): 301-315.
20
Perry BC, Soltys D, Toledo AH, et al.Tumor necrosis factor-α in liver ischemia/reperfusion injury[J]. J Invest Surg, 2011, 24(4): 178-188.
21
He J, Gerstenlauer M, Chan LK, et al. Block of NF-kB signaling accelerates MYC-driven hepatocellular carcinogenesis and modifies the tumor phenotype towards combined hepatocellular cholangiocarcinoma[J]. Cancer Lett, 2019, 458: 113-122.
22
van Golen RF, van Gulik TM, Heger M. The sterile immune response during hepatic ischemia/reperfusion[J]. Cytokine Growth Factor Rev, 2012, 23(3): 69-84.
23
Nace GW, Huang H, Klune JR, et al. Cellular-specific role of toll-like receptor 4 in hepatic ischemia-reperfusion injury in mice[J]. Hepatology, 2013, 58(1): 374-387.
24
Tsung A, Klune JR, Zhang X, et al. HMGB1 release induced by liver ischemia involves Toll-like receptor 4 dependent reactive oxygen species production and calcium-mediated signaling[J]. J Exp Med, 2007, 204(12): 2913-2923.
25
Chang WJ, Toledo-Pereyra LH. The role of HMGB1 and HSP72 in ischemia and reperfusion injury[J]. J Surg Res, 2011, 166(2): 219-221.
26
莫翠萍,任力杰,赵振富,等. BMSCs移植治疗大鼠脊髓损伤效果及局部细胞因子表达变化[J]. 中国修复重建外科杂志,2016, 30(3): 265-271.
27
刘树雄,何建. HMGB1移位和释放与肝脏缺血再灌注损伤的机制[J]. 中国实验诊断学,2018, 22(8): 1444-1447.
28
Barnhart BC, Alappat EC, Peter ME. The CD95 type I/type II model[J]. Semin Immunol, 2003, 15(3): 185-193.
29
Huang X, Masselli A, Frisch SM, et al. Blockade of tumor necrosis factorinduced Bid cleavage by caspase-resistant Rb[J]. J Biol Chem, 2007, 282(40): 29401-29413.
30
邵文生,王江,王帆帆. HMGB1在肝缺血再灌注损伤中的作用及其与细胞凋亡的关系[J]. 中国现代普通外科进展,2016, 19(3): 175-178.
31
咸国哲,吴晓本,刘景磊,等. 姜黄素对大鼠移植肝缺血再灌注损伤指标血红素氧合酶-1表达的影响[J]. 中华实验外科杂志,2015, 32(1): 193.
32
Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch[J]. Nat Rev Cancer, 2002, 2(9): 647-656.
33
Yang E, Zha J, Jockel J, et al. Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death[J]. Cell, 1995, 80(2): 285-291.
34
Weng Q, Liu Z, Li B, et al. Oxidative stress induces mouse follicular granulosa cells apoptosis via JNK/FoxO1 pathway[J]. PLoS One, 2016, 11(12): e0167869.
35
王耀华,秦春宏. 肝脏缺血再灌注损伤机制研究进展[J]. 西南军医,2019, 21(2): 146-149.
36
Shimizu S, Narita M, Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC[J]. Nature, 1999, 399(6735): 483-487.
37
林杰,曾仲. 线粒体途径在肝脏缺血再灌注损伤中的作用的研究进展[J]. 中华肝胆外科杂志,2020, 26(1): 69-72.
38
李欢,熊静,杨树龙,等. 线粒体通路、氧化应激在肝脏缺血再灌注损伤细胞凋亡中作用机制的研究进展[J]. 山东医药,2018, 58(40): 99-102.
39
Kim JS, He L, Qian T, et al. Role of the mitochondrial permeability transition in apoptotic and necrotic death after ischemia/reperfusion injury to hepatocytes[J]. Curr Mol Med, 2003, 3(6): 527-535.
40
王菲,贾莉莉,翁亦齐,等. 线粒体自噬在缺血再灌注损伤中作用的研究进展[J]. 中华器官移植杂志,2015, 36(8): 503-505.
41
Sanjuán-Pla A, Cervera AM, Apostolova N, et al. A targeted antioxidant reveals the importance of mitochondrial reactive oxygen species in the hypoxic signaling of HIF-1alpha[J]. FEBS Lett, 2005, 579(12): 2669-2674.
42
Callapina M, Zhou J, Schmid T, et al. NO restores HIF-1alpha hydroxylation during hypoxia: role of reactive oxygen species[J]. Free Radic Biol Med, 2005, 39(7): 925-936.
43
Görlach A, Berchner-Pfannschmidt U, Wotzlaw C, et al. Reactive oxygen species modulate HIF-1 mediated PAI-1 expression: involvement of the GTPase Rac1[J]. Thromb Haemost, 2003, 89(5): 926-935.
44
Hu CJ, Wang LY, Chodosh LA, et al. Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation[J]. Mol Cell Biol, 2003, 23(24): 9361-9374.
45
Semenza GL. O2-regulated gene expression: transcriptional control of cardiorespiratory physiology by HIF-1[J]. J Appl Physiol (1985), 2004, 96(3):1173-1177.
46
Zhong Z, Ramshesh VK, Rehman H, et al. Activation of the oxygen-sensing signal cascade prevents mitochondrial injury after mouse liver ischemia-reperfusion[J]. Am J Physiol Gastrointest Liver Physiol, 2008, 295(4): G823-G832.
47
索立达,佟立权. PI3K-Akt信号传导通路在缺血再灌注损伤中的研究进展[J]. 河北医科大学学报,2014, 35(2): 237-240.
48
华东旭,王明明,马国华,等. 肝脏缺血激活PI3K/p-Akt2信号通路并促进库普弗细胞向M1型巨噬细胞转化[J]. 南京医科大学学报(自然科学版), 2019, 39(8): 1177-1182.
49
Cheng D, Zhang L, Yang G, et al. Hepatitis C virus NS5A drives a PTEN-PI3K/Akt feedback loop to support cell survival[J]. Liver Int, 2015, 35(6): 1682-1691.
50
Gnocchi D, Leoni S, Incerpi S, et al. 3,5,3′-triiodothyronine (T3) stimulates cell proliferation through the activation of the PI3K/Akt pathway and reactive oxygen species (ROS) production in chick embryo hepatocytes[J]. Steroids, 2012, 77(6): 589-595.
51
Yang J, Chen Q, Tian S, et al. The role of 1,25-dyhydroxyvitamin D3 in mouse liver ischemia reperfusion injury: regulation of autophagy through activation of MEK/ERK signaling and PTEN/PI3K/Akt/Mtorc1 signaling[J]. Am J Transl Res, 2015, 7(12): 2630-2645.
52
Zhong C, Pu LY, Fang MM, et al. Retinoic acid receptor a promotes autophagy to alleviate liver ischemia and reperfusion injury[J]. World J Gastroenterol, 2015, 21(43): 12381-12391.
53
Xu J, Qin X, Cai X, et al.Mitochondrial JNK activation triggers autophagy and apoptosis and aggravates myocardial injury following ischemia/reperfusion[J]. Biochim Biophys Acta, 2015, 1852(2): 262-270.
54
Wang C, Chen K, Xia Y, et al. N-Acetylcysteine attenuates ischemia-reperfusion-induced apoptosis and autophagy in mouse liver via regulation of the ROS/JNK/Bcl-2 pathway[J]. PLoS One, 2014, 9(9): e108855.
55
Katwal G, Baral D, Fan X, et al. SIRT3 a major player in attenuation of hepatic ischemia-reperfusion injury by reducing ROS via its downstream mediators: SOD2, CYP-D, and HIF-1 α[J]. Oxid Med Cell Longev, 2018: 2976957.
56
Gao W, Feng Z, Zhang S, et al. Anti-inflammatory and antioxidant effect of eucommia ulmoides polysaccharide in hepatic ischemia-reperfusion injury by regulating ROS and the TLR-4-NF-κB pathway[J]. Biomed Res Int, 2020:1860637.
57
Sattler PB, Schäfer S, Karagiannidis C. Extrakorporale Membranoxygenierung (ECMO) - State of the Art[J]. Der Pneumologe, 2020, 17(4): 249-255.
58
Gallinat A, Amrillaeva V, Hoyer DP, et al. Reconditioning by end-ischemic hypothermic in-house machine perfusion: a promising strategy to improve outcome in expanded criteria donors kidney transplantation[J]. Clin Transplant, 2017, 31(3): 12904.
59
孙煦勇. 体外膜肺氧合用于尸体供器官保护的技术操作规范(2019版)[J]. 器官移植,2019, 10(4): 376-382.
60
孙煦勇,秦科. 体外膜肺氧合在中国公民逝世后捐献供器官保护中的应用专家共识(2016版)[J/CD]. 中华移植杂志:电子版,2016, 10(3): 107-111.
[1] 丁建民, 秦正义, 张翔, 周燕, 周洪雨, 王彦冬, 经翔. 超声造影与普美显磁共振成像对具有高危因素的≤3 cm肝结节进行LI-RADS分类诊断的前瞻性研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 930-938.
[2] 吕衡, 董理聪, 谢海琴, 赵卓非, 刘俐, 孙德胜. 基于CT-超声对照的肝脏局灶性病变超声漏诊状况分析:一项单中心横断面质量控制调查报告[J]. 中华医学超声杂志(电子版), 2023, 20(07): 712-716.
[3] 中华医学会器官移植学分会, 中国医师协会器官移植医师分会, 上海医药行业协会. 中国肝、肾移植受者霉酚酸类药物应用专家共识(2023版)[J]. 中华移植杂志(电子版), 2023, 17(05): 257-272.
[4] 陆闻青, 陈昕怡, 任雪飞. 遗传代谢病儿童肝移植受者术后生活质量调查研究[J]. 中华移植杂志(电子版), 2023, 17(05): 287-292.
[5] 范铁艳, 李君, 陈虹. 肝移植术后新发戊型病毒性肝炎的诊治经验[J]. 中华移植杂志(电子版), 2023, 17(05): 293-296.
[6] 严庆, 刘颖, 邓斐文, 陈焕伟. 微血管侵犯对肝癌肝移植患者生存预后的影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 624-629.
[7] 廖梅, 张红君, 金洁玚, 吕艳, 任杰. 床旁超声造影对肝移植术后早期肝动脉血栓的诊断价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 630-634.
[8] 李秉林, 吕少诚, 潘飞, 姜涛, 樊华, 寇建涛, 贺强, 郎韧. 供肝灌注液病原菌与肝移植术后早期感染的相关性分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 656-660.
[9] 吕垒, 冯啸, 何凯明, 曾凯宁, 杨卿, 吕海金, 易慧敏, 易述红, 杨扬, 傅斌生. 改良金氏评分在儿童肝豆状核变性急性肝衰竭肝移植手术时机评估中价值并文献复习[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 661-668.
[10] 韩宇, 张武, 李安琪, 陈文颖, 谢斯栋. MRI肝脏影像报告和数据系统对非肝硬化乙肝患者肝细胞癌的诊断价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 669-673.
[11] 唐灿, 李向阳, 秦浩然, 李婧, 王天云, 柯阳, 朱红. 原发性肝脏神经内分泌肿瘤单中心12例诊治与疗效分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 674-680.
[12] 王孟龙. 肿瘤生物学特征在肝癌肝移植治疗中的意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 490-494.
[13] 王淑友, 宋晓晶, 贾术永, 王广军, 张维波. 肝脏去唾液酸糖蛋白受体靶向活体荧光成像评估酒精性肝损伤肝脏功能的研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 443-446.
[14] 吴钰娴, 冯亚园, 霍雷, 贾宁阳, 张娟. 原发性肝脏淋巴瘤的影像学诊断价值研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 349-353.
[15] 张敏洁, 张小杉, 段莎莎, 施依璐, 赵捷, 白天昊, 王雅晳. 氢气治疗心肌缺血再灌注损伤的作用机制及展望[J]. 中华临床医师杂志(电子版), 2023, 17(06): 744-748.
阅读次数
全文


摘要