1 |
胡诗航,王孟龙. 原发性肝癌单个肿瘤不同治疗方法的效果比较[J]. 北京医学,2016, 38(4): 289-292.
|
2 |
曾凯宁,姜楠. 肝癌肝移植适应证标准的发展及展望[J]. 器官移植,2014, (3): 152-155.
|
3 |
秦蒙华,史冀华,郭文治,等. 肝移植术后远期并发症及其防治[J]. 中华器官移植杂志,2018, 39(11): 694-697.
|
4 |
中华医学会器官移植学分会,中华医学会外科学分会移植学组,中国医师协会器官移植医师分会. 中国肝癌肝移植临床实践指南[J/CD]. 中华移植杂志:电子版,2014, 8(2): 61-65.
|
5 |
Zhou Y, Yin Z, Hou B, et al. Expression profiles and prognostic significance of RNA N6-methyladenosine-related genes in patients with hepatocellular carcinoma: evidence from independent datasets[J]. Cancer Manag Res, 2019, 11: 3921-3931.
|
6 |
Lin X, Chai G, Wu Y, et al. RNA m(6)A methylation regulates the epithelial mesenchymal transition of cancer cells and translation of Snail[J]. Nat Commun, 2019, 10(1): 2065.
|
7 |
Zhao X, Chen Y, Mao Q, et al. Overexpression of YTHDF1 is associated with poor prognosis in patients with hepatocellular carcinoma[J]. Cancer Biomark, 2018, 21(4): 859-868.
|
8 |
郭粉粉. CD147功能性SNP与原发性肝癌易感性的相关性分析及其生物学效应的研究[D]. 南宁:广西医科大学,2018.
|
9 |
Smith AJ, Humphries SE. Cytokine and cytokine receptor gene polymorphisms and their functionality[J]. Cytokine Growth Factor Rev, 2009, 20(1): 43-59.
|
10 |
Cai J, Cai Y, Ma Q, et al. Association of p53 codon 72 polymorphism with susceptibility to hepatocellular carcinoma in a Chinese population from northeast Sichuan[J]. Biomed Rep, 2017, 6(2): 217-222.
|
11 |
Bayram S. RASSF1A Ala133Ser polymorphism is associated with increased susceptibility to hepatocellular carcinoma in a Turkish population[J]. Gene, 2012, 498(2): 264-269.
|
12 |
马凯,任雷,滕木俭. 基因单核苷酸多态性与肝癌肝移植术后复发的研究进展[J]. 中国现代普通外科进展,2014, 17(4): 302-305.
|
13 |
Bai Y, Yang C, Wu R, et al. YTHDF1 regulates tumorigenicity and cancer stem cell-like activity in human colorectal carcinoma[J]. Front Oncol, 2019, 9: 332.
|
14 |
Liu S, Li G, Li Q, et al. The roles and mechanisms of YTH domain-containing proteins in cancer development and progression[J]. Am J Cancer Res, 2020, 10(4): 1068-1084.
|
15 |
Andrade Fde O, De Assis S, Jin L, et al. Lipidomic fatty acid profile and global gene expression pattern in mammary gland of rats that were exposed to lard-based high fat diet during fetal and lactation periods associated to breast cancer risk in adulthood[J]. Chem Biol Interact, 2015, 239: 118-28.
|
16 |
Liu L, Liu X, Dong Z, et al. N6-methyladenosine-related genomic targets are altered in breast cancer tissue and associated with poor survival[J]. J Cancer, 2019, 10(22): 5447-5459.
|
17 |
Adhikari S, Xiao W, Zhao YL, et al. m(6)A: Signaling for mRNA splicing[J]. RNA Biol, 2016, 13(9): 756-759.
|
18 |
Tian J, Ying P, Ke J, et al. ANKLE1 N(6) -Methyladenosine-related variant is associated with colorectal cancer risk by maintaining the genomic stability[J], 2020, 146(12): 3281-3293.
|
19 |
Liu T, Li C, Jin L, et al. The prognostic value of m6A RNA methylation regulators in colon adenocarcinoma[J]. Med Sci Monit, 2019, 25: 9435-9445.
|
20 |
Burbage M, Gros M, Amigorena S. Translate less, prime better, to improve anti-tumor responses[J]. Nat Immunol, 2019, 20(5): 518-520.
|
21 |
Kim DJ, Iwasaki A. YTHDF1 control of dendritic cell cross-priming as a possible target of cancer immunotherapy[J], 2019, 58(15): 1945-1946.
|
22 |
Han D, Liu J, Chen C, et al. Anti-tumour immunity controlled through mRNA m(6)A methylation and YTHDF1 in dendritic cells[J]. Nature, 2019, 566(7743): 270-274.
|
23 |
Yang Z, Li J, Feng G, et al. MicroRNA-145 modulates N(6)-methyladenosine levels by targeting the 3′-Untranslated mRNA region of the N(6)-methyladenosine binding YTH domain family 2 protein[J]. J Biol Chem, 2017, 292(9): 3614-3623.
|