切换至 "中华医学电子期刊资源库"

中华移植杂志(电子版) ›› 2021, Vol. 15 ›› Issue (02) : 119 -123. doi: 10.3877/cma.j.issn.1674-3903.2021.02.012

综述

肝内巨噬细胞参与肝脏缺血再灌注损伤的机制
喻博1, 邱涛1,()   
  1. 1. 430060 武汉大学人民医院器官移植科
  • 收稿日期:2020-12-27 出版日期:2021-04-25
  • 通信作者: 邱涛
  • 基金资助:
    国家自然科学基金(81870076)

Mechanism of macrophages involved in hepatic ischemia-reperfusion injury

Bo Yu1, Tao Qiu1,()   

  1. 1. Department of Organ Transplanation, Renmin Hospital of Wuhan University, Wuhan 430060, China
  • Received:2020-12-27 Published:2021-04-25
  • Corresponding author: Tao Qiu
引用本文:

喻博, 邱涛. 肝内巨噬细胞参与肝脏缺血再灌注损伤的机制[J/OL]. 中华移植杂志(电子版), 2021, 15(02): 119-123.

Bo Yu, Tao Qiu. Mechanism of macrophages involved in hepatic ischemia-reperfusion injury[J/OL]. Chinese Journal of Transplantation(Electronic Edition), 2021, 15(02): 119-123.

肝脏缺血再灌注损伤(IRI)是创伤、休克、肝脏外科手术和肝移植中常见的病理生理现象,涉及多种分子机制,是各种细胞共同作用的结果。严重的肝脏IRI常导致肝功能障碍,甚至肝衰竭。目前关于肝脏IRI机制尚未完全阐明。近年来有研究发现巨噬细胞在肝脏IRI发生发展过程中发挥了重要作用。本文综述近年来关于巨噬细胞在肝脏IRI中的研究进展,以期为后续研究提供思路。

Hepatic ischemia-reperfusion injury (IRI) is a common pathophysiological phenomenon in trauma, shock, liver surgery and liver transplantation. It involves a variety of molecular mechanisms and is the result of the interaction of various cells. Severe liver IRI often leads to liver dysfunction, even liver failure. Until now, the mechanism of liver IRI has not been fully elucidated. In recent years, macrophages have been found to play an important role in liver IRI. This paper aims to summarize the research progress of macrophages in IRI in recent years, and provide some ideas for further research.

1
Kalogeris T, Baines CP, Krenz M, et al. Ischemia/reperfusion[J]. Compr Physiol, 2016, 7(1): 113-170.
2
Lu TF, Yang TH, Zhong CP, et al. Dual effect of hepatic macrophages on liver ischemia and reperfusion injury during liver transplantation[J]. Immune Netw, 2018, 18(3): E24.
3
Krenkel O, Tacke F. Liver macrophages in tissue homeostasis and disease[J]. Nat Rev Immunol, 2017, 17(5): 306-321.
4
Saradna A, Do DC, Kumar S, et al. Macrophage polarization and allergic asthma[J]. Transl Res, 2018, 191(7): 1-14.
5
Tan HY, Wang N, Li S, et al. The reactive oxygen species in macrophage polarization: reflecting its dual role in progression and treatment of human diseases[J]. Oxid Med Cell Longev, 2016: 2795090.
6
Klune JR, Tsung A. Molecular biology of liver ischemia/reperfusion injury: established mechanisms and recent advancements [J]. Surg Clin North Am, 2010, 90(4): 665-677.
7
Tsung A, Sahai R, Tanaka H, et al. The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion[J]. J Exp Med, 2005, 201(7): 1135-1143.
8
Cursio R, Colosetti P, Gugenheim J. Autophagy and liver ischemia-reperfusion injury[J]. Biomed Res Int, 2015: 417590.
9
Colletti LM, Remick DG, Burtch GD, et al. Role of tumor necrosis factor-alpha in the pathophysiologic alterations after hepatic ischemia/reperfusion injury in the rat[J]. J Clin Invest, 1990, 85(6): 1936-1943.
10
Chen Z, Hagler J, Palombella VJ, et al. Signal-induced site-specific phosphorylation targets I kappa B alpha to the ubiquitin-proteasome pathway[J]. Genes Dev, 1995, 9(13): 1586-1597.
11
Ghosh S, May MJ, Kopp EB. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses[J]. Annu Rev Immunol, 1998, 16(1): 225-260.
12
Mihm S. Danger-associated molecular patterns (DAMPs): molecular triggers for sterile inflammation in the liver[J]. Int J Mol Sci, 2018, 19(10): 3104.
13
Chávez-Cartaya RE, Desola GP, Wright L, et al. Regulation of the complement cascade by soluble complement receptor type 1. Protective effect in experimental liver ischemia and reperfusion[J]. Transplantation, 1995, 59(7): 1047-1052.
14
Abraham NG, Junge JM, Drummond GS. Translational significance of heme oxygenase in obesity and metabolic syndrome[J]. Trends Pharmacol Sci, 2016, 37(1): 17-36.
15
Araujo JA, Zhang M, Yin F. Heme oxygenase-1, oxidation, inflammation, and atherosclerosis[J]. Front Pharmacol, 2012, 3(44): 119.
16
Rao J, Yue S, Fu Y, et al. ATF6 mediates a pro-inflammatory synergy between ER stress and TLR activation in the pathogenesis of liver ischemia-reperfusion injury[J]. Am J Transplant, 2014, 14(7): 1552-1561.
17
Xu X, Wang M, Li JZ, et al. Tauroursodeoxycholic acid alleviates hepatic ischemia reperfusion injury by suppressing the function of Kupffer cells in mice[J]. Biomed Pharmacother, 2018, 106(24): 1271-1281.
18
Hu Y, Yang C, Shen G, et al. Hyperglycemia-triggered sphingosine-1-phosphate and sphingosine-1-phosphate receptor 3 signaling worsens liver ischemia/reperfusion injury by regulating M1/M2 polarization[J]. Liver Transpl, 2019, 25(7): 1074-1090.
19
Li Z, Ju Z, Frieri M. The T-cell immunoglobulin and mucin domain (Tim) gene family in asthma, allergy, and autoimmunity[J]. Allergy Asthma Proc, 2013, 34(1): E21-E26.
20
Freeman GJ, Casasnovas JM, Umetsu DT, et al. TIM genes: a family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity[J]. Immunol Rev, 2010, 235(1): 172-189.
21
Rothschild DE, Mcdaniel DK, Ringel-Scaia VM, et al. Modulating inflammation through the negative regulation of NF-κB signaling[J]. J Leukoc Biol, 2018, 103(6): 1131-1150.
22
刘彦,吴皓,龚建平,等. 阻断kupffer细胞的tim-4蛋白功能对小鼠肝脏缺血再灌注损伤的影响[J]. 第三军医大学学报,2019, 41(1): 48-55.
23
Chen R, Hou W, Zhang Q, et al. Emerging role of high-mobility group box 1 (HMGB1) in liver diseases[J]. Mol Med, 2013, 19(1): 357-366.
24
Hua S, Ma M, Fei X, et al. Glycyrrhizin attenuates hepatic ischemia-reperfusion injury by suppressing HMGB1-dependent GSDMD-mediated kupffer cells pyroptosis[J]. Int Immunopharmacol, 2019, 68(10): 145-155.
25
Liu X, Yao M, Li N, et al. CaMKII promotes TLR-triggered proinflammatory cytokine and type I interferon production by directly binding and activating TAK1 and IRF3 in macrophages[J]. Blood, 2008, 112(13): 4961-4970.
26
Zheng D, Li Z, Wei X, et al. Role of mir-148a in mitigating hepatic ischemia-reperfusion injury by repressing the TLR4 signaling pathway via targeting CaMKIIα in vivo And in vitro[J]. Cell Physiol Biochem, 2018, 49(5): 2060-2072.
27
Liu XL, Pan Q, Cao HX, et al. Lipotoxic hepatocyte-derived exosomal microRNA 192-5p activates macrophages through rictor/Akt/forkhead box transcription factor O1 signaling in nonalcoholic fatty liver disease[J]. Hepatology, 2020, 72(2): 454-469.
28
Xu D, Zhu J, Jeong S, et al. Rictor deficiency aggravates hepatic ischemia/reperfusion injury in mice by suppressing autophagy and regulating MAPK signaling[J]. Cell Physiol Biochem, 2018, 45(6): 2199-2212.
29
Ni D, Wei H, Chen W, et al. Ceria nanoparticles meet hepatic ischemia-reperfusion injury: the perfect imperfection[J]. Adv Mater, 2019, 31(40): E1902956.
30
Knolle P, Schlaak J, Uhrig A, et al. Human Kupffer Cells secrete IL-10 in response to lipopolysaccharide (Lps) challenge[J]. J Hepatol, 1995, 22(2): 226-229.
31
Dinant S, Veteläinen RL, Florquin S, et al. IL-10 attenuates hepatic I/R injury and promotes hepatocyte proliferation[J]. J Surg Res, 2007, 141(2): 176-182.
32
Ye Y, Wang W, Zhang W, et al. Galectin-1 attenuates hepatic ischemia reperfusion injury in mice[J]. Int Immunopharmacol, 2019, 77(11): 105997.
33
Duffield JS, Hong S, Vaidya VS, et al. Resolvin D series and protectin D1 mitigate acute kidney injury[J]. J Immunol, 2006, 177(9): 5902-5911.
34
Zhang T, Shu HH, Chang L, et al. Resolvin D1 protects against hepatic ischemia/reperfusion injury in rats[J]. Int Immunopharmacol, 2015, 28(1): 322-327.
35
Huang J, Shen XD, Yue S, et al. Adoptive transfer of heme oxygenase-1 (Ho-1)-modified macrophages rescues the nuclear factor erythroid 2-related factor (Nrf2) antiinflammatory phenotype in liver ischemia/reperfusion injury[J]. Mol Med, 2014, 20(1): 448-455.
36
Nakamura K, Zhang M, Kageyama S, et al. Macrophage heme oxygenase-1-Sirt1-P53 axis regulates sterile inflammation in liver ischemia-reperfusion injury[J]. J Hepatol, 2017, 67(6): 1232-1242.
37
Hull TD, Kamal AI, Boddu R, et al. Heme oxygenase-1 regulates myeloid cell trafficking in AKI[J]. J Am Soc Nephrol, 2015, 26(9): 2139-2151.
38
Kang LI, Mars WM, Michalopoulos GK. Signals and cells involved in regulating liver regeneration[J]. Cells, 2012, 1(4): 1261-1292.
39
Wang Y, Yu A, Yu FX. The Hippo pathway in tissue homeostasis and regeneration[J]. Protein Cell, 2017, 8(5): 349-359.
40
Baeck C, Wehr A, Karlmark KR, et al. Pharmacological inhibition of the chemokine Ccl2 (Mcp-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury[J]. Gut, 2012, 61(3): 416-426.
41
Kim HY, Kim SJ, Lee SM. Activation of Nlrp3 and Aim2 inflammasomes in Kupffer cells in hepatic ischemia/reperfusion[J]. Febs J, 2015, 282(2): 259-270.
42
Zhang J, Xu P, Song P, et al. Ccl2-Ccr2 signaling promotes hepatic ischemia/reperfusion injury[J]. J Surg Res, 2016, 202(2): 352-362.
43
Ohkubo H, Ito Y, Minamino T, et al. Vegfr1-positive macrophages facilitate liver repair and sinusoidal reconstruction after hepatic ischemia/reperfusion injury[J]. PLoS One, 2014, 9(8): E105533.
44
Liu A, Fang H, Dirsch O, et al. Early release of macrophage migration inhibitory factor after liver ischemia and reperfusion injury in rats[J]. Cytokine, 2012, 57(1): 150-157.
45
Ohkubo H, Ito Y, Minamino T, et al. Leukotriene B4 type-1 receptor signaling promotes liver repair after hepatic ischemia/reperfusion injury through the enhancement of macrophage recruitment[J]. Faseb J, 2013, 27(8): 3132-3143.
46
Patouraux S, Rousseau D, Rubio A, et al. Osteopontin deficiency aggravates hepatic injury induced by ischemia-reperfusion in mice[J]. Cell Death Dis, 2014, 5(5): E1208.
47
Li CX, Ng KT, Shao Y, et al. The inhibition of aldose reductase attenuates hepatic ischemia-reperfusion injury through reducing inflammatory response[J]. Ann Surg, 2014, 260(2): 317-328.
[1] 张凯, 乔永杰, 林志强, 刘健, 邓泽群, 谭飞, 曾健康, 李嘉欢, 李培杰, 周胜虎. 假体周围骨溶解中巨噬细胞极化的机制研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 618-625.
[2] 杨瑾, 刘雪克, 张媛媛, 金钧, 韦瑶. 肠道微生物来源石胆酸对脓毒症相关肝损伤的保护作用[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 265-274.
[3] 陈桂华, 钟小玲, 谢雨, 王慧, 谢江, 杨涛毅. 合并肝脏疾病特殊健康状态儿童疫苗预防接种及时性临床分析[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(04): 431-439.
[4] 叶美妮, 刘思嘉, 臧玉玮, 刘云建. 肝硬化门静脉血栓形成的研究进展[J/OL]. 中华普通外科学文献(电子版), 2024, 18(05): 379-384.
[5] 刘连新, 张树庚. 腹腔镜左半肝联合左尾状叶切除术[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(04): 368-368.
[6] 唐亦骁, 陈峻, 连正星, 胡海涛, 鲁迪, 徐骁, 卫强. 白果内酯对小鼠肝缺血再灌注损伤保护作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 278-282.
[7] 王雪玲, 曹欢, 顾劲扬. 肠道菌群在器官缺血再灌注损伤中的作用及机制研究进展[J/OL]. 中华移植杂志(电子版), 2024, 18(04): 247-250.
[8] 王泽钦, 洪军, 王雅平, 王健, 蒿汉坤. W型肝脏悬吊技术在全腹腔镜下全胃切除术中的应用[J/OL]. 中华腔镜外科杂志(电子版), 2024, 17(04): 218-221.
[9] 任江波, 李丽, 王萍. 阻断PI3K/Akt信号通路促进低表达FoxA2肝脏前体细胞对分化诱导剂应答并朝肝细胞方向分化[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 336-343.
[10] 孙璐, 蒋亚玲, 陈凌君. 布托啡诺对脑缺血再灌注损伤大鼠神经炎症和JAK2/STAT3信号通路的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 344-350.
[11] 蔡艺丹, 方坚, 张志强, 陈莉, 张世安, 夏磊, 阮梅, 李东良. 经颈静脉肝内门体分流术对肝硬化门脉高压患者肠道菌群及肝功能的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 285-293.
[12] 雷永琪, 刘新阳, 杨黎渝, 铁学宏, 俞星新, 耿志达, 刘雨, 陈政良, 惠鹏, 梁英健. 肝脏血管周上皮样细胞肿瘤合并贫血一例并文献复习[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 710-718.
[13] 朱军, 宋家伟, 乔一桓, 郭雅婕, 刘帅, 姜玉, 李纪鹏. M2型巨噬细胞特征基因与结肠癌免疫微环境研究[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 303-311.
[14] 李京, 牛博, 刘晓蓓, 魏新雪, 黄荣. circ-SESN2 沉默靶向调控miRNA-23a-5p/ULK1 在神经细胞氧化应激损伤中的作用机制研究[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 263-272.
[15] 向林, 江云颂, 程吕佳, 关炳生, 杨景哥. 生长素释放肽在肥胖治疗中的潜在应用价值研究进展[J/OL]. 中华肥胖与代谢病电子杂志, 2024, 10(04): 235-241.
阅读次数
全文


摘要