切换至 "中华医学电子期刊资源库"

中华移植杂志(电子版) ›› 2021, Vol. 15 ›› Issue (02) : 119 -123. doi: 10.3877/cma.j.issn.1674-3903.2021.02.012

综述

肝内巨噬细胞参与肝脏缺血再灌注损伤的机制
喻博1, 邱涛1,()   
  1. 1. 430060 武汉大学人民医院器官移植科
  • 收稿日期:2020-12-27 出版日期:2021-04-25
  • 通信作者: 邱涛
  • 基金资助:
    国家自然科学基金(81870076)

Mechanism of macrophages involved in hepatic ischemia-reperfusion injury

Bo Yu1, Tao Qiu1,()   

  1. 1. Department of Organ Transplanation, Renmin Hospital of Wuhan University, Wuhan 430060, China
  • Received:2020-12-27 Published:2021-04-25
  • Corresponding author: Tao Qiu
引用本文:

喻博, 邱涛. 肝内巨噬细胞参与肝脏缺血再灌注损伤的机制[J]. 中华移植杂志(电子版), 2021, 15(02): 119-123.

Bo Yu, Tao Qiu. Mechanism of macrophages involved in hepatic ischemia-reperfusion injury[J]. Chinese Journal of Transplantation(Electronic Edition), 2021, 15(02): 119-123.

肝脏缺血再灌注损伤(IRI)是创伤、休克、肝脏外科手术和肝移植中常见的病理生理现象,涉及多种分子机制,是各种细胞共同作用的结果。严重的肝脏IRI常导致肝功能障碍,甚至肝衰竭。目前关于肝脏IRI机制尚未完全阐明。近年来有研究发现巨噬细胞在肝脏IRI发生发展过程中发挥了重要作用。本文综述近年来关于巨噬细胞在肝脏IRI中的研究进展,以期为后续研究提供思路。

Hepatic ischemia-reperfusion injury (IRI) is a common pathophysiological phenomenon in trauma, shock, liver surgery and liver transplantation. It involves a variety of molecular mechanisms and is the result of the interaction of various cells. Severe liver IRI often leads to liver dysfunction, even liver failure. Until now, the mechanism of liver IRI has not been fully elucidated. In recent years, macrophages have been found to play an important role in liver IRI. This paper aims to summarize the research progress of macrophages in IRI in recent years, and provide some ideas for further research.

1
Kalogeris T, Baines CP, Krenz M, et al. Ischemia/reperfusion[J]. Compr Physiol, 2016, 7(1): 113-170.
2
Lu TF, Yang TH, Zhong CP, et al. Dual effect of hepatic macrophages on liver ischemia and reperfusion injury during liver transplantation[J]. Immune Netw, 2018, 18(3): E24.
3
Krenkel O, Tacke F. Liver macrophages in tissue homeostasis and disease[J]. Nat Rev Immunol, 2017, 17(5): 306-321.
4
Saradna A, Do DC, Kumar S, et al. Macrophage polarization and allergic asthma[J]. Transl Res, 2018, 191(7): 1-14.
5
Tan HY, Wang N, Li S, et al. The reactive oxygen species in macrophage polarization: reflecting its dual role in progression and treatment of human diseases[J]. Oxid Med Cell Longev, 2016: 2795090.
6
Klune JR, Tsung A. Molecular biology of liver ischemia/reperfusion injury: established mechanisms and recent advancements [J]. Surg Clin North Am, 2010, 90(4): 665-677.
7
Tsung A, Sahai R, Tanaka H, et al. The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion[J]. J Exp Med, 2005, 201(7): 1135-1143.
8
Cursio R, Colosetti P, Gugenheim J. Autophagy and liver ischemia-reperfusion injury[J]. Biomed Res Int, 2015: 417590.
9
Colletti LM, Remick DG, Burtch GD, et al. Role of tumor necrosis factor-alpha in the pathophysiologic alterations after hepatic ischemia/reperfusion injury in the rat[J]. J Clin Invest, 1990, 85(6): 1936-1943.
10
Chen Z, Hagler J, Palombella VJ, et al. Signal-induced site-specific phosphorylation targets I kappa B alpha to the ubiquitin-proteasome pathway[J]. Genes Dev, 1995, 9(13): 1586-1597.
11
Ghosh S, May MJ, Kopp EB. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses[J]. Annu Rev Immunol, 1998, 16(1): 225-260.
12
Mihm S. Danger-associated molecular patterns (DAMPs): molecular triggers for sterile inflammation in the liver[J]. Int J Mol Sci, 2018, 19(10): 3104.
13
Chávez-Cartaya RE, Desola GP, Wright L, et al. Regulation of the complement cascade by soluble complement receptor type 1. Protective effect in experimental liver ischemia and reperfusion[J]. Transplantation, 1995, 59(7): 1047-1052.
14
Abraham NG, Junge JM, Drummond GS. Translational significance of heme oxygenase in obesity and metabolic syndrome[J]. Trends Pharmacol Sci, 2016, 37(1): 17-36.
15
Araujo JA, Zhang M, Yin F. Heme oxygenase-1, oxidation, inflammation, and atherosclerosis[J]. Front Pharmacol, 2012, 3(44): 119.
16
Rao J, Yue S, Fu Y, et al. ATF6 mediates a pro-inflammatory synergy between ER stress and TLR activation in the pathogenesis of liver ischemia-reperfusion injury[J]. Am J Transplant, 2014, 14(7): 1552-1561.
17
Xu X, Wang M, Li JZ, et al. Tauroursodeoxycholic acid alleviates hepatic ischemia reperfusion injury by suppressing the function of Kupffer cells in mice[J]. Biomed Pharmacother, 2018, 106(24): 1271-1281.
18
Hu Y, Yang C, Shen G, et al. Hyperglycemia-triggered sphingosine-1-phosphate and sphingosine-1-phosphate receptor 3 signaling worsens liver ischemia/reperfusion injury by regulating M1/M2 polarization[J]. Liver Transpl, 2019, 25(7): 1074-1090.
19
Li Z, Ju Z, Frieri M. The T-cell immunoglobulin and mucin domain (Tim) gene family in asthma, allergy, and autoimmunity[J]. Allergy Asthma Proc, 2013, 34(1): E21-E26.
20
Freeman GJ, Casasnovas JM, Umetsu DT, et al. TIM genes: a family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity[J]. Immunol Rev, 2010, 235(1): 172-189.
21
Rothschild DE, Mcdaniel DK, Ringel-Scaia VM, et al. Modulating inflammation through the negative regulation of NF-κB signaling[J]. J Leukoc Biol, 2018, 103(6): 1131-1150.
22
刘彦,吴皓,龚建平,等. 阻断kupffer细胞的tim-4蛋白功能对小鼠肝脏缺血再灌注损伤的影响[J]. 第三军医大学学报,2019, 41(1): 48-55.
23
Chen R, Hou W, Zhang Q, et al. Emerging role of high-mobility group box 1 (HMGB1) in liver diseases[J]. Mol Med, 2013, 19(1): 357-366.
24
Hua S, Ma M, Fei X, et al. Glycyrrhizin attenuates hepatic ischemia-reperfusion injury by suppressing HMGB1-dependent GSDMD-mediated kupffer cells pyroptosis[J]. Int Immunopharmacol, 2019, 68(10): 145-155.
25
Liu X, Yao M, Li N, et al. CaMKII promotes TLR-triggered proinflammatory cytokine and type I interferon production by directly binding and activating TAK1 and IRF3 in macrophages[J]. Blood, 2008, 112(13): 4961-4970.
26
Zheng D, Li Z, Wei X, et al. Role of mir-148a in mitigating hepatic ischemia-reperfusion injury by repressing the TLR4 signaling pathway via targeting CaMKIIα in vivo And in vitro[J]. Cell Physiol Biochem, 2018, 49(5): 2060-2072.
27
Liu XL, Pan Q, Cao HX, et al. Lipotoxic hepatocyte-derived exosomal microRNA 192-5p activates macrophages through rictor/Akt/forkhead box transcription factor O1 signaling in nonalcoholic fatty liver disease[J]. Hepatology, 2020, 72(2): 454-469.
28
Xu D, Zhu J, Jeong S, et al. Rictor deficiency aggravates hepatic ischemia/reperfusion injury in mice by suppressing autophagy and regulating MAPK signaling[J]. Cell Physiol Biochem, 2018, 45(6): 2199-2212.
29
Ni D, Wei H, Chen W, et al. Ceria nanoparticles meet hepatic ischemia-reperfusion injury: the perfect imperfection[J]. Adv Mater, 2019, 31(40): E1902956.
30
Knolle P, Schlaak J, Uhrig A, et al. Human Kupffer Cells secrete IL-10 in response to lipopolysaccharide (Lps) challenge[J]. J Hepatol, 1995, 22(2): 226-229.
31
Dinant S, Veteläinen RL, Florquin S, et al. IL-10 attenuates hepatic I/R injury and promotes hepatocyte proliferation[J]. J Surg Res, 2007, 141(2): 176-182.
32
Ye Y, Wang W, Zhang W, et al. Galectin-1 attenuates hepatic ischemia reperfusion injury in mice[J]. Int Immunopharmacol, 2019, 77(11): 105997.
33
Duffield JS, Hong S, Vaidya VS, et al. Resolvin D series and protectin D1 mitigate acute kidney injury[J]. J Immunol, 2006, 177(9): 5902-5911.
34
Zhang T, Shu HH, Chang L, et al. Resolvin D1 protects against hepatic ischemia/reperfusion injury in rats[J]. Int Immunopharmacol, 2015, 28(1): 322-327.
35
Huang J, Shen XD, Yue S, et al. Adoptive transfer of heme oxygenase-1 (Ho-1)-modified macrophages rescues the nuclear factor erythroid 2-related factor (Nrf2) antiinflammatory phenotype in liver ischemia/reperfusion injury[J]. Mol Med, 2014, 20(1): 448-455.
36
Nakamura K, Zhang M, Kageyama S, et al. Macrophage heme oxygenase-1-Sirt1-P53 axis regulates sterile inflammation in liver ischemia-reperfusion injury[J]. J Hepatol, 2017, 67(6): 1232-1242.
37
Hull TD, Kamal AI, Boddu R, et al. Heme oxygenase-1 regulates myeloid cell trafficking in AKI[J]. J Am Soc Nephrol, 2015, 26(9): 2139-2151.
38
Kang LI, Mars WM, Michalopoulos GK. Signals and cells involved in regulating liver regeneration[J]. Cells, 2012, 1(4): 1261-1292.
39
Wang Y, Yu A, Yu FX. The Hippo pathway in tissue homeostasis and regeneration[J]. Protein Cell, 2017, 8(5): 349-359.
40
Baeck C, Wehr A, Karlmark KR, et al. Pharmacological inhibition of the chemokine Ccl2 (Mcp-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury[J]. Gut, 2012, 61(3): 416-426.
41
Kim HY, Kim SJ, Lee SM. Activation of Nlrp3 and Aim2 inflammasomes in Kupffer cells in hepatic ischemia/reperfusion[J]. Febs J, 2015, 282(2): 259-270.
42
Zhang J, Xu P, Song P, et al. Ccl2-Ccr2 signaling promotes hepatic ischemia/reperfusion injury[J]. J Surg Res, 2016, 202(2): 352-362.
43
Ohkubo H, Ito Y, Minamino T, et al. Vegfr1-positive macrophages facilitate liver repair and sinusoidal reconstruction after hepatic ischemia/reperfusion injury[J]. PLoS One, 2014, 9(8): E105533.
44
Liu A, Fang H, Dirsch O, et al. Early release of macrophage migration inhibitory factor after liver ischemia and reperfusion injury in rats[J]. Cytokine, 2012, 57(1): 150-157.
45
Ohkubo H, Ito Y, Minamino T, et al. Leukotriene B4 type-1 receptor signaling promotes liver repair after hepatic ischemia/reperfusion injury through the enhancement of macrophage recruitment[J]. Faseb J, 2013, 27(8): 3132-3143.
46
Patouraux S, Rousseau D, Rubio A, et al. Osteopontin deficiency aggravates hepatic injury induced by ischemia-reperfusion in mice[J]. Cell Death Dis, 2014, 5(5): E1208.
47
Li CX, Ng KT, Shao Y, et al. The inhibition of aldose reductase attenuates hepatic ischemia-reperfusion injury through reducing inflammatory response[J]. Ann Surg, 2014, 260(2): 317-328.
[1] 丁建民, 秦正义, 张翔, 周燕, 周洪雨, 王彦冬, 经翔. 超声造影与普美显磁共振成像对具有高危因素的≤3 cm肝结节进行LI-RADS分类诊断的前瞻性研究[J]. 中华医学超声杂志(电子版), 2023, 20(09): 930-938.
[2] 吕衡, 董理聪, 谢海琴, 赵卓非, 刘俐, 孙德胜. 基于CT-超声对照的肝脏局灶性病变超声漏诊状况分析:一项单中心横断面质量控制调查报告[J]. 中华医学超声杂志(电子版), 2023, 20(07): 712-716.
[3] 陆宜仙, 张震涛, 夏德萌, 王家林. 巨噬细胞极化在骨质疏松中调控作用及机制的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 538-541.
[4] 王鹏, 肖厚安, 贾赤宇. 不同因素调控巨噬细胞极化在慢性难愈性创面中的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 454-459.
[5] 彭进, 岳扬, 余德才. 基于Laennec膜指引多次肝脏手术后肝周粘连分离[J]. 中华腔镜外科杂志(电子版), 2023, 16(04): 243-245.
[6] 韩宇, 张武, 李安琪, 陈文颖, 谢斯栋. MRI肝脏影像报告和数据系统对非肝硬化乙肝患者肝细胞癌的诊断价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 669-673.
[7] 唐灿, 李向阳, 秦浩然, 李婧, 王天云, 柯阳, 朱红. 原发性肝脏神经内分泌肿瘤单中心12例诊治与疗效分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 674-680.
[8] 李双喜, 胡宗凯, 赵静, 黄洁. 肝血管瘤治疗指征及治疗策略[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 504-510.
[9] 金艳盛, 董改琴, 李晓忠. 巨噬细胞在慢性肾脏病患者血管钙化中的作用与机制研究进展[J]. 中华肾病研究电子杂志, 2023, 12(04): 234-237.
[10] 关明函, 薛志强. 右美托咪定改善大鼠脑缺血再灌注后脑损伤的研究[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 270-276.
[11] 杨梦琦, 马慧芬, 訾阳, 王楠, 杜冰玉, 常万鹏, 于少泓. 马黛茶对脑血管疾病防治作用的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 235-240.
[12] 王淑友, 宋晓晶, 贾术永, 王广军, 张维波. 肝脏去唾液酸糖蛋白受体靶向活体荧光成像评估酒精性肝损伤肝脏功能的研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 443-446.
[13] 吴钰娴, 冯亚园, 霍雷, 贾宁阳, 张娟. 原发性肝脏淋巴瘤的影像学诊断价值研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 349-353.
[14] 张敏洁, 张小杉, 段莎莎, 施依璐, 赵捷, 白天昊, 王雅晳. 氢气治疗心肌缺血再灌注损伤的作用机制及展望[J]. 中华临床医师杂志(电子版), 2023, 17(06): 744-748.
[15] 张敏洁, 王雅晳, 段莎莎, 施依璐, 付文艳, 赵海玥, 张小杉. 基于GEO数据库和生物信息学分析筛选大鼠心肌缺血再灌注损伤相关潜在通路和靶点[J]. 中华临床医师杂志(电子版), 2023, 17(04): 438-445.
阅读次数
全文


摘要