切换至 "中华医学电子期刊资源库"

中华移植杂志(电子版) ›› 2024, Vol. 18 ›› Issue (04) : 247 -250. doi: 10.3877/cma.j.issn.1674-3903.2024.04.009

综 述

肠道菌群在器官缺血再灌注损伤中的作用及机制研究进展
王雪玲, 曹欢, 顾劲扬()   
  1. 430022 武汉,华中科技大学同济医学院附属协和医院肝脏移植中心
    430030 武汉,器官移植教育部重点实验室 国家卫生健康委员会器官移植重点实验室 中国医学科学院器官移植重点实验室
  • 收稿日期:2024-03-03 出版日期:2024-08-08
  • 通信作者: 顾劲扬
  • 基金资助:
    国家自然科学基金重点项目(8213000134)国家自然科学基金面上项目(82072645,82470689)湖北省自然科学基金重点项目(创新群体项目)(2023AFA029)

Progress in research on the role and mechanism of gut microbiota in organ ischemia reperfusion injury

Xueling Wang, Huan Cao, Jinyang Gu()   

  1. Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022,China
    Key Laboratory of Organ Transplantation, Ministry of Education
    NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences,Wuhan 430030, China
  • Received:2024-03-03 Published:2024-08-08
  • Corresponding author: Jinyang Gu
引用本文:

王雪玲, 曹欢, 顾劲扬. 肠道菌群在器官缺血再灌注损伤中的作用及机制研究进展[J]. 中华移植杂志(电子版), 2024, 18(04): 247-250.

Xueling Wang, Huan Cao, Jinyang Gu. Progress in research on the role and mechanism of gut microbiota in organ ischemia reperfusion injury[J]. Chinese Journal of Transplantation(Electronic Edition), 2024, 18(04): 247-250.

缺血再灌注损伤(IRI)是指在组织或器官缺血一段时间后,血流恢复时造成的损伤。 在临床实践中,器官移植不可避免地会发生IRI,其发生机制复杂,仍缺乏有效治疗手段。 肠道菌群通过调控免疫反应、炎症响应以及代谢产物的生成参与多系统疾病的发生发展过程,亦在多器官IRI 过程表现出深远影响。 本文综述近期关于肠道菌群及其代谢产物在肠道及肝脏、肾脏等器官IRI 中的作用和机制研究进展,以期为器官IRI 的诊疗提供新的思路。

Ischemia reperfusion injury (IRI) refers to the damage caused when blood flow is restored to tissues or organs after a period of ischemia. In clinical practice, IRI is an inevitable occurrence during organ transplantation. The mechanisms underlying IRI are complex, and effective treatment options are still lacking. The intestinal flora plays a significant role in the development of multisystem diseases by regulating immune responses, inflammatory reactions, and the production of metabolic byproducts. It also exerts a profound impact on the IRI process in multiple organs. This article reviews recent progress in research on the roles and mechanisms of the intestinal flora and its metabolic products in IRI of the intestines, liver, kidneys, and other organs, with the hope of providing new diagnostic and therapeutic strategies for IRI.

1
Carcy R, Cougnon M, Poet M, et al. Targeting oxidative stress, a crucial challenge in renal transplantation outcome[J]. Free Radic Biol Med, 2021,169:258-270.
2
Tang W, Backhed F, Landmesser U, et al. Intestinal microbiota in cardiovascular health and disease: JACC state-of-the-art review[J].J Am Coll Cardiol, 2019,73(16):2089-2105.
3
Castillo DJ, Rifkin RF, Cowan DA, et al. The healthy human blood microbiome: fact or fiction?[J]. Front Cell Infect Microbiol, 2019,9:148.
4
Deng F, Lin ZB, Sun QS, et al. The role of intestinal microbiota and its metabolites in intestinal and extraintestinal organ injury induced by intestinal ischemia reperfusion injury[J]. Int J Biol Sci, 2022,18(10):3981-3992.
5
Huang W, Yan Y, Wu M, et al. Preoperative fasting confers protection against intestinal ischaemia/reperfusion injury by modulating gut microbiota and their metabolites in a mouse model[J]. Br J Anaesth, 2022,128(3):501-512.
6
Hu J, Deng F, Zhao B, et al. Lactobacillus murinus alleviate intestinal ischemia/reperfusion injury through promoting the release of interleukin-10 from M2 macrophages via Toll-like receptor 2 signaling[J]. Microbiome, 2022,10(1):38.
7
Deng F, Hu JJ, Lin ZB, et al. Gut microbe-derived milnacipran enhances tolerance to gut ischemia/reperfusion injury[J]. Cell Rep Med, 2023,4(3):100979.
8
Deng F, Zhao BC, Yang X, et al. The gut microbiota metabolite capsiate promotes Gpx4 expression by activating TRPV1 to inhibit intestinal ischemia reperfusion-inducedferroptosis [ J ].Gut Microbes, 2021,13(1):1-21.
9
Deng F, Hu JJ, Yang X, et al. Gut microbial metabolite pravastatin attenuates intestinal ischemia/reperfusion injury through promoting IL-13 release from type II innate lymphoid cells via IL-33/ST2 signaling[J]. Front Immunol, 2021,12:704836.
10
Zhang FL, Chen XW, Wang YF, et al. Microbiota-derived tryptophan metabolites indole-3-lactic acid is associated with intestinal ischemia/reperfusion injury via positive regulation of YAP and Nrf2[J]. J Transl Med, 2023,21(1):264.
11
Bosi A, Banfi D, Bistoletti M, et al. Hyaluronan regulates neuronal and immune function in the rat small intestine and colonic microbiota after ischemic/reperfusion injury[J]. Cells, 2022,11(21): 3370.
12
Vairetti M, Di Pasqua LG, Cagna M, et al. Changes in glutathione content in liver diseases: an update[J]. Antioxidants (Basel),2021,10(3): 364.
13
欧可, 彭秀达, 费书珂. 肝缺血再灌注损伤相关通路的研究进展[J]. 肝胆胰外科杂志, 2022, 34(9):571-576.
14
Cornide-Petronio ME, Alvarez-Mercado AI, Jimenez-Castro MB, et al. Current knowledge about the effect of nutritional status,supplemented nutrition diet, and gut microbiota on hepatic ischemiareperfusion and regeneration in liver surgery[J]. Nutrients, 2020,12(2):284.
15
Liu H, Wang J, Ding Y, et al. Antibiotic pretreatment attenuates liver ischemia-reperfusion injury by farnesoid X receptor activation[J]. Cell Death Dis, 2022,13(5):484.
16
Yang X, Lu D, Zhuo J, et al. The gut-liver axis in immune remodeling: new insight into liver diseases[J]. Int J Biol Sci, 2020,16(13):2357-2366.
17
Kawasoe J, Uchida Y, Kawamoto H, et al. Propionic acid, induced in gut by an inulin diet, suppresses inflammation and ameliorates liver ischemia and reperfusion injury in mice[J]. Front Immunol, 2022,13:862503.
18
Li R, Xie L, Li L, et al. The gut microbial metabolite, 3,4-dihydroxyphenylpropionicacid,alleviateshepaticischemia/reperfusion injury via mitigation of macrophage pro-inflammatory activity in mice[J]. Acta Pharm Sin B, 2022,12(1):182-196.
19
He M, Wei W, Zhang Y, et al. Gut microbial metabolites SCFAs and chronic kidney disease[J]. J Transl Med, 2024,22(1):172.
20
Yang J, Kim CJ, Go YS, et al. Intestinal microbiota control acute kidney injury severity by immune modulation[J]. Kidney Int, 2020,98(4):932-946.
21
Zhang P, Han X, Zhang X, et al. Lactobacillus acidophilus ATCC 4356 alleviates renal ischemia-reperfusion injury through antioxidant stress and anti-inflammatory responses and improves intestinal microbial distribution[J]. Front Nutr, 2021,8:667695.
22
李娜. 短链脂肪酸通过抑制肾脏炎症减轻小鼠缺血再灌注肾损伤[D]. 太原:山西医科大学, 2023.
23
Stoeva MK, Garcia-So J, Justice N, et al. Butyrate-producing human gut symbiont, clostridium butyricum, and its role in health and disease[J]. Gut Microbes, 2021,13(1):1-28.
24
Heusch G. Myocardial ischaemia-reperfusion injury and cardioprotection in perspective[J]. Nat Rev Cardiol, 2020,17(12):773-789.
25
Chen C, Zhang H, Xie R, et al. Gut microbiota aggravate cardiac ischemia-reperfusion injury via regulating the formation of neutrophils extracellular traps[J]. Life Sci, 2022, 303:120670.
26
Zhao J, Zhang Q, Cheng W, et al. Heart-gut microbiota communication determines the severity of cardiac injury after myocardial ischaemia/reperfusion[J]. Cardiovasc Res, 2023, 119(6):1390-1402.
27
Bai H, Gu RJ, Chen LY, et al. Electroacupuncture interventions alleviates myocardial ischemia reperfusion injury through regulating gut microbiota in rats[J]. Microvasc Res, 2021,138:104235.
28
Liu Q, Zhu Y, Li G, et al. Irisin ameliorates myocardial ischemiareperfusion injury by modulating gut microbiota and intestinal permeability in rats[J]. PLoS One, 2023, 18(9):e0291022.
29
Zheng D, Liu Z, Zhou Y, et al. Urolithin B, a gut microbiota metabolite, protects against myocardial ischemia/reperfusion injury via p62/Keap1/Nrf2 signaling pathway[J]. Pharmacol Res, 2020,153:104655.
30
Amani H, Mostafavi E, Alebouyeh MR, et al. Would colloidal gold nanocarriers present an effective diagnosis or treatment for ischemic stroke?[J]. Int J Nanomedicine, 2019,14:8013-8031.
31
Margolis KG, Cryan JF, Mayer EA. The Microbiota-gut-brain axis:from motility to mood[J]. Gastroenterology, 2021,160(5):1486-1501.
32
Feng Y, Zhang D, Zhao Y, et al. Effect of intestinal microbiota transplantation on cerebral ischemia reperfusion injury in aged mice via inhibition of IL-17[J]. Neurogastroenterol Motil, 2022,34(7):e14313.
33
Chen HD, Jiang MZ, Zhao YY, et al. Effects of breviscapine on cerebral ischemia-reperfusion injury and intestinal flora imbalance by regulating the TLR4/MyD88/NF-kappaB signaling pathway in rats[J]. J Ethnopharmacol, 2023, 300:115691.
34
Xian M, Shen L, Zhan S, et al. Integrated 16S rRNA gene sequencing and LC/MS-based metabolomics ascertained synergistic influences of the combination of acupuncture and NaoMaiTong on ischemic stroke[J]. J Ethnopharmacol, 2022, 293:115281.
35
王凯. 黄芪红花配伍调控肠道菌群影响胆汁酸代谢发挥脑保护作用的机制研究[D]. 咸阳:陕西中医药大学, 2021.
36
Wang YH, Yan ZZ, Luo SD, et al. Gut microbiota-derived succinate aggravates acute lung injury after intestinal ischaemia/reperfusion in mice[J]. Eur Respir J, 2023,61(2): 2200840.
37
Matthay MA, Ware LB, Zimmerman GA. The acute respiratory distress syndrome[J]. J Clin Invest, 2012, 122(8):2731-2740.
38
Dang AT, Marsland BJ. Microbes, metabolites, and the gut-lung axis[J]. Mucosal Immunol, 2019, 12(4):843-850.
39
Hung KY, Wu SY, Pao HP, et al. Acetate, a gut bacterial product,ameliorates ischemia-reperfusion induced acute lung injury in rats[J]. Int Immunopharmacol, 2022, 111:109136.
40
尹国芳. 粪菌移植对脂多糖诱导的大鼠急性肺损伤的影响及调控机制[D]. 泸州:西南医科大学, 2019.
[1] 杨瑾, 刘雪克, 张媛媛, 金钧, 韦瑶. 肠道微生物来源石胆酸对脓毒症相关肝损伤的保护作用[J]. 中华危重症医学杂志(电子版), 2024, 17(04): 265-274.
[2] 李嘉兴, 孙乙文, 李文星. NLRP3炎性小体在急性胰腺炎中作用的研究进展[J]. 中华普通外科学文献(电子版), 2024, 18(04): 300-304.
[3] 李玲, 刘亚, 李培玲, 张秀敏, 李萍. 直肠癌患者术后肠道菌群的变化与抑郁症相关性研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(06): 607-610.
[4] 彭瑞, 杨瑞文, 魏澹宁, 夏永良. 琥珀酸受体1加重肾脏缺血再灌注损伤的作用研究[J]. 中华移植杂志(电子版), 2024, 18(03): 159-164.
[5] 汪子涵, 张瑾, 肖飞, 梁朝阳. 常温体外肺灌注技术治疗肺缺血再灌注损伤的研究进展[J]. 中华移植杂志(电子版), 2024, 18(01): 48-54.
[6] 方道成, 唐春华, 胡媛媛. 肠道菌群对草酸钙肾结石形成的影响[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 509-513.
[7] 张一绚, 韩冰, 刘超, 李思晨, 孙雪峰. 年轻化内环境改善老年小鼠肾缺血再灌注损伤诱导的肾间质纤维化[J]. 中华肾病研究电子杂志, 2024, 13(03): 129-133.
[8] 张艺, 任秀君, 郭孟玮, 赵雅芳, 李一凡, 李佳阳, 任晓暄, 邬继红, 卢海洋. 电针预处理对脑缺血再灌注大鼠行为学及外周血内皮祖细胞的影响[J]. 中华神经创伤外科电子杂志, 2024, 10(02): 71-77.
[9] 赵小民, 杨军, 田巍巍. 枳术颗粒联合利那洛肽治疗便秘型肠易激综合征的临床研究[J]. 中华消化病与影像杂志(电子版), 2024, 14(05): 465-469.
[10] 邱岭, 朱旭丽, 浦坚, 邢苗苗, 吴佳玲. 糖尿病肾病患者肠道菌群生态特点与胃肠道功能障碍的关联性研究[J]. 中华消化病与影像杂志(电子版), 2024, 14(05): 453-458.
[11] 宋燕秋, 戚桂艳, 杨双双, 周萍. 重症急性胰腺炎肠道菌群特征及早期肠内营养联合微生态制剂治疗的临床价值[J]. 中华消化病与影像杂志(电子版), 2024, 14(05): 442-447.
[12] 谢鸿, 李娜, 李尚日, 谢涛. 肠道菌群特征对结肠癌化学治疗疗效的影响[J]. 中华消化病与影像杂志(电子版), 2024, 14(01): 53-56.
[13] 韦美菊, 潘玲. 肠道菌群-胆汁酸代谢轴在慢性肾脏病中的研究进展[J]. 中华临床医师杂志(电子版), 2024, 18(02): 219-222.
[14] 张大涯, 陈世锔, 陈润祥, 张晓冬, 李达, 白飞虎. 肠道微生物群对代谢相关脂肪性肝病发展的影响[J]. 中华临床医师杂志(电子版), 2023, 17(07): 828-833.
[15] 刘俊彬, 张晓婷, 郭镜培, 刘佳妮, 于本帅, 张可, 周斌. 熊果酸通过抑制NLRP3介导的小胶质细胞焦亡减轻脑缺血再灌注损伤的研究[J]. 中华介入放射学电子杂志, 2024, 12(03): 221-227.
阅读次数
全文


摘要