切换至 "中华医学电子期刊资源库"

中华移植杂志(电子版) ›› 2024, Vol. 18 ›› Issue (01) : 48 -54. doi: 10.3877/cma.j.issn.1674-3903.2024.01.010

综述

常温体外肺灌注技术治疗肺缺血再灌注损伤的研究进展
汪子涵1, 张瑾1, 肖飞1,(), 梁朝阳1   
  1. 1. 100029 北京中日友好医院胸外科 北京中日友好临床医学研究所
  • 收稿日期:2023-11-20 出版日期:2024-02-25
  • 通信作者: 肖飞
  • 基金资助:
    高水平医院临床研究项目(2022-NHLHCRF-LX-03-0303); 中日医院菁英计划研究项目(ZRJY2021-GG07)

Progress in the treatment of lung ischemia-reperfusion injury by ex vivo lung perfusion at normal temperature

Zihan Wang1, Jin Zhang1, Fei Xiao1,(), Chaoyang Liang1   

  1. 1. Department of Thoracic Surgery, Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China
  • Received:2023-11-20 Published:2024-02-25
  • Corresponding author: Fei Xiao
引用本文:

汪子涵, 张瑾, 肖飞, 梁朝阳. 常温体外肺灌注技术治疗肺缺血再灌注损伤的研究进展[J]. 中华移植杂志(电子版), 2024, 18(01): 48-54.

Zihan Wang, Jin Zhang, Fei Xiao, Chaoyang Liang. Progress in the treatment of lung ischemia-reperfusion injury by ex vivo lung perfusion at normal temperature[J]. Chinese Journal of Transplantation(Electronic Edition), 2024, 18(01): 48-54.

肺移植作为终末期肺疾病的有效治疗方式,可改善患者生活质量和预后。供肺发生严重缺血再灌注损伤(IRI)会引起原发性移植物功能障碍,影响移植术后生存率。肺IRI发生的相关分子机制尚不完全清楚,因此探索IRI的发生机制,寻找其新的治疗和管理手段,对于肺移植的结局至关重要。常温体外肺灌注(EVLP)作为一种保存、评估和修复边缘肺移植物的技术,目前开展了与EVLP相关的一系列治疗肺IRI研究。本文综述肺IRI的相关机制以及EVLP期间针对肺IRI的精准化治疗,旨在为EVLP期间对供肺IRI进行特定的靶向和个性化治疗提供依据。

Lung transplantation has improved the quality of life and prognosis of patients with various end-stage lung illnesses as an efficient therapy. Severe ischemia-reperfusion injury (IRI) in the donor lung might result in primary graft dysfunction, lowering the overall survival probability following transplant.The mechanism behind the incidence of IRI is currently unknown. As a result, it is critical for the success of lung transplantation to investigate the mechanism of IRI and develop innovative methods of IRI therapy and management. A number of research on treatment IRI have been conducted as a strategy for conserving, assessing, and healing marginal lung grafts. This study outlines the main IRI processes and several IRI treatment techniques during ex vivo lung perfusion (EVLP), with the goal of providing a foundation for precise targeted and tailored therapy of lung IRI during EVLP.

1
Israni AK, Zaun D, Gauntt K, et al. OPTN/SRTR 2020 annual data report: DOD[J]. Am J Transplant, 2022, 22 (Suppl 2):519-552.
2
Cypel M, Yeung JC, Machuca T, et al. Experience with the first 50 ex vivo lung perfusions in clinical transplantation[J]. J Thorac Cardiovasc Surg, 2012, 144(5):1200-1206.
3
Fischer S, Maclean AA, Liu M, et al. Dynamic changes in apoptotic and necrotic cell death correlate with severity of ischemia-reperfusion injury in lung transplantation[J]. Am J Respir Crit Care Med, 2000, 162(5): 1932-1939.
4
Kim H, Zamel R, Bai XH, et al. Ischemia-reperfusion induces death receptor-independent necroptosis via calpain-STAT3 activation in a lung transplant setting[J]. Am J Physiol Lung Cell Mol Physiol, 2018, 315(4): L595-L608.
5
Yu P, Zhang X, Liu N, et al. Pyroptosis: mechanisms and diseases[J]. Signal Transduct Target Ther, 2021, 6(1): 128.
6
Noda K, Tane S, Haam SJ, et al. Targeting circulating leukocytes and pyroptosis during ex vivo lung perfusion improves lung preservation[J]. Transplantation, 2017, 101(12): 2841-2849.
7
Yu S, Jia J, Zheng J, et al. Recent progress of ferroptosis in lung diseases[J]. Front Cell Dev Biol, 2021, 9:789517.
8
Xu Y, Li X, Cheng Y, et al. Inhibition of ACSL4 attenuates ferroptotic damage after pulmonary ischemia-reperfusion[J]. FASEB J, 2020, 34(12): 16262-16275.
9
Sanada S, Kitakaze M. Ischemic preconditioning: emerging evidence, controversy, and translational trials[J]. Int J Cardiol, 2004, 97(2): 263-276.
10
Gourdin MJ, Bree B, De Kock M. The impact of ischaemia-reperfusion on the blood vessel[J]. Eur J Anaesthesiol, 2009, 26(7): 537-547.
11
Diamond JM, Christie JD. The contribution of airway and lung tissue ischemia to primary graft dysfunction[J]. Curr Opin Organ Transplant, 2010, 15(5): 552-557.
12
Criner RN, Clausen E, Cantu E. Primary graft dysfunction[J]. Curr Opin Organ Transplant, 2021, 26(3): 321-327.
13
Hashimoto K, Cypel M, Juvet S, et al. Higher M30 and high mobility group box 1 protein levels in ex vivo lung perfusate are associated with primary graft dysfunction after human lung transplantation[J]. J Heart Lung Transplant, 2018, 37(2):240-249.
14
Wong A, Zamel R, Yeung J, et al. Potential therapeutic targets for lung repair during human ex vivo lung perfusion[J]. Eur Respir J, 2020, 55(4): 1902222.
15
Chambers DC, Cherikh WS, Harhay MO, et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: thirty-sixth adult lung and heart-lung transplantation report-2019; focus theme: donor and recipient size match[J]. J Heart Lung Transplant, 2019, 38(10): 1042-1055.
16
Divithotawela C, Cypel M, Martinu T, et al. Long-term outcomes of lung transplant with ex vivo lung perfusion[J]. JAMA Surg, 2019, 154(12): 1143-1150.
17
Li J, Peng Q, Yang R, et al. Application of mesenchymal stem cells during machine perfusion: an emerging novel strategy for organ preservation[J]. Front Immunol, 2021, 12: 713920.
18
Nakajima D, Watanabe Y, Ohsumi A, et al. Mesenchymal stromal cell therapy during ex vivo lung perfusion ameliorates ischemia-reperfusion injury in lung transplantation[J]. J Heart Lung Transplant, 2019, 38(11): 1214-1223.
19
Miceli V, Bertani A, Chinnici CM, et al. Conditioned medium from human amnion-derived mesenchymal stromal/stem cells attenuating the effects of cold ischemia-reperfusion injury in an in vitro model using human alveolar epithelial cells[J]. Int J Mol Sci, 2021, 22(2):510.
20
Abreu SC, Antunes MA, Xisto DG, et al. Bone marrow, adipose, and lung tissue-derived murine mesenchymal stromal cells release different mediators and differentially affect airway and lung parenchyma in experimental asthma[J]. Stem Cells Transl Med, 2017, 6(6): 1557-1567.
21
Reiter J, Drummond S, Sammour I, et al. Stromal derived factor-1 mediates the lung regenerative effects of mesenchymal stem cells in a rodent model of bronchopulmonary dysplasia[J]. Respir Res, 2017, 18(1): 137.
22
Stone ML, Zhao Y, Robert Smith J, et al. Mesenchymal stromal cell-derived extracellular vesicles attenuate lung ischemia-reperfusion injury and enhance reconditioning of donor lungs after circulatory death[J]. Respir Res, 2017, 18(1): 212.
23
Ware L B, Fang X, Wang Y, et al. High prevalence of pulmonary arterial thrombi in donor lungs rejected for transplantation[J]. J Heart Lung Transplant, 2005, 24(10): 1650-1656.
24
Inci I, Zhai W, Arni S, et al. Fibrinolytic treatment improves the quality of lungs retrieved from non-heart-beating donors[J]. J Heart Lung Transplant, 2007, 26(10): 1054-1060.
25
Motoyama H, Chen F, Ohsumi A, et al. Protective effect of plasmin in marginal donor lungs in an ex vivo lung perfusion model[J]. J Heart Lung Transplant, 2013, 32(5): 505-510.
26
Motoyama H, Chen F, Hijiya K, et al. Plasmin administration during ex vivo lung perfusion ameliorates lung ischemia-reperfusion injury[J]. J Heart Lung Transplant, 2014, 33(10): 1093-1099.
27
Kumar A, Noda K, Philips B, et al. Nitrite attenuates mitochondrial impairment and vascular permeability induced by ischemia-reperfusion injury in the lung[J]. Am J Physiol Lung Cell Mol Physiol, 2020, 318(4): L580-L591.
28
Ghosh A, Sumi MP, Tupta B, et al. Low levels of nitric oxide promotes heme maturation into several hemeproteins and is also therapeutic[J]. Redox Biol, 2022, 56: 102478.
29
Schepp CP, Reutershan J. Bench-to-bedside review: adenosine receptors-promising targets in acute lung injury?[J]. Crit Care, 2008, 12(5): 226.
30
Emaminia A, Lapar D J, Zhao Y, et al. Adenosine A2A agonist improves lung function during ex vivo lung perfusion[J]. Ann Thorac Surg, 2011, 92(5): 1840-1846.
31
Stone ML, Sharma AK, Mas VR, et al. Ex Vivo perfusion with adenosine A2A receptor agonist enhances rehabilitation of murine donor lungs after circulatory death[J]. Transplantation, 2015, 99(12): 2494-2503.
32
Huerter ME, Sharma AK, Zhao Y, et al. Attenuation of pulmonary ischemia-reperfusion injury by adenosine A2B receptor antagonism[J]. Ann Thorac Surg, 2016, 102(2): 385-393.
33
Kobayashi E, Sano M. Organ preservation solution containing dissolved hydrogen gas from a hydrogen-absorbing alloy canister improves function of transplanted ischemic kidneys in miniature pigs[J]. PLoS One, 2019, 14(10): e0222863.
34
Yamamoto H, Aokage T, Igawa T, et al. Luminal preloading with hydrogen-rich saline ameliorates ischemia-reperfusion injury following intestinal transplantation in rats[J]. Pediatr Transplant, 2020, 24(7):e13848.
35
Du H, Sheng M, Wu L, et al. Hydrogen-rich saline attenuates acute kidney injury after liver transplantation via activating p53-mediated autophagy[J]. Transplantation, 2016, 100(3): 563-570.
36
Luo ZL, Cheng L, Ren JD, et al. Hydrogen-rich saline protects against ischemia/reperfusion injury in grafts after pancreas transplantations by reducing oxidative stress in rats[J]. Mediators Inflamm, 2015: 281985.
37
Noda K, Shigemura N, Tanaka Y, et al. A novel method of preserving cardiac grafts using a hydrogen-rich water bath[J]. J Heart Lung Transplant, 2013, 32(2): 241-250.
38
Cai J, Kang Z, Liu WW, et al. Hydrogen therapy reduces apoptosis in neonatal hypoxia-ischemia rat model[J]. Neurosci Lett, 2008, 441(2): 167-172.
39
Noda K, Shigemura N, Tanaka Y, et al. Hydrogen preconditioning during ex vivo lung perfusion improves the quality of lung grafts in rats[J]. Transplantation, 2014, 98(5): 499-506.
40
Haam S, Lee S, Paik HC, et al. The effects of hydrogen gas inhalation during ex vivo lung perfusion on donor lungs obtained after cardiac death[J]. Eur J Cardiothorac Surg, 2015, 48(4): 542-547.
41
Haam S, Lee JG, Paik HC, et al. Hydrogen gas inhalation during ex vivo lung perfusion of donor lungs recovered after cardiac death[J]. J Heart Lung Transplant, 2018, 37(10): 1271-1278.
42
Navarro MN, Gómez De Las Heras MM, Mittelbrunn M. Nicotinamide adenine dinucleotide metabolism in the immune response, autoimmunity and inflammageing[J]. Br J Pharmacol, 2022, 179(9): 1839-1856.
43
Ehrsam JP, Chen J, Rodriguez Cetina Biefer H, et al. Ex vivo lung perfusion with β-nicotinamide adenine dinucleotide(NAD+) improves ischemic lung function[J]. Antioxidants (Basel), 2022, 11(5):843.
44
Gao W, Zhao J, Kim H, et al. α1-antitrypsin inhibits ischemia reperfusion-induced lung injury by reducing inflammatory response and cell death[J]. J Heart Lung Transplant, 2014, 33(3): 309-315.
45
Lin H, Chen M, Tian F, et al. α(1)-anti-trypsin improves function of porcine donor lungs during ex-vivo lung perfusion[J]. J Heart Lung Transplant, 2018, 37(5): 656-666.
46
Iskender I, Sakamoto J, Nakajima D, et al. Human α1-antitrypsin improves early post-transplant lung function: pre-clinical studies in a pig lung transplant model[J]. J Heart Lung Transplant, 2016, 35(7): 913-921.
47
Stelzner TJ, Weil JV, O′brien RF. Role of cyclic adenosine monophosphate in the induction of endothelial barrier properties[J]. J Cell Physiol, 1989, 139(1): 157-166.
48
Akbar S, Minor T. Significance and molecular targets of protein kinase a during cAMP-mediated protection of cold stored liver grafts[J]. Cell Mol Life Sci, 2001, 58(11): 1708-1714.
49
Ji H, Shen XD, Zhang Y, et al. Activation of cyclic adenosine monophosphate-dependent protein kinase a signaling prevents liver ischemia/reperfusion injury in mice[J]. Liver Transpl, 2012, 18(6): 659-670.
50
Chen F, Nakamura T, Fujinaga T, et al. Protective effect of a nebulized beta2-adrenoreceptor agonist in warm ischemic-reperfused rat lungs[J]. Ann Thorac Surg, 2006, 82(2): 465-471.
51
Sakamoto J, Chen F, Nakajima D, et al. The effect of β-2 adrenoreceptor agonist inhalation on lungs donated after cardiac death in a canine lung transplantation model[J]. J Heart Lung Transplant, 2012, 31(7): 773-779.
52
Kondo T, Chen F, Ohsumi A, et al. β2-adrenoreceptor agonist inhalation during ex vivo lung perfusion attenuates lung injury[J]. Ann Thorac Surg, 2015, 100(2): 480-486.
53
Ghaidan H, Stenlo M, Niroomand A, et al. Reduction of primary graft dysfunction using cytokine adsorption during organ preservation and after lung transplantation[J]. Nat Commun, 2022, 13(1): 4173.
54
Niroomand A, Hirdman G, Pierre L, et al. Proteomic changes to immune and inflammatory processes underlie lung preservation using ex vivo cytokine adsorption[J]. Front Cardiovasc Med, 2023, 10: 1274444.
55
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2): 281-297.
56
Broderick JA, Zamore PD. MicroRNA therapeutics[J]. Gene therapy, 2011, 18(12): 1104-1110.
57
Jia P, Teng J, Zou J, et al. miR-21 contributes to xenon-conferred amelioration of renal ischemia-reperfusion injury in mice[J]. Anesthesiology, 2013, 119(3): 621-630.
58
Li XQ, Lv HW, Wang ZL, et al. MiR-27a ameliorates inflammatory damage to the blood-spinal cord barrier after spinal cord ischemia: reperfusion injury in rats by downregulating TICAM-2 of the TLR4 signaling pathway[J]. J Neuroinflammation, 2015, 12: 25.
59
Pan Z, Sun X, Ren J, et al. miR-1 exacerbates cardiac ischemia-reperfusion injury in mouse models[J]. PLoS One, 2012, 7(11): e50515.
60
Elgharably H, Okamoto T, Ayyat KS, et al. Human lungs airway epithelium upregulate microRNA-17 and microRNA-548b in response to cold ischemia and ex vivo reperfusion[J]. Transplantation, 2020, 104(9): 1842-1852.
61
Lohser J, Slinger P. Lung injury after one-lung ventilation: a review of the pathophysiologic mechanisms affecting the ventilated and the collapsed lung[J]. Anesth Analg, 2015, 121(2): 302-318.
62
Niikawa H, Okamoto T, Ayyat KS, et al. The protective effect of prone lung position on ischemia-reperfusion injury and lung function in an ex vivo porcine lung model[J]. J Thorac Cardiovasc Surg, 2019, 157(1): 425-433.
63
Ordies S, Frick AE, Claes S, et al. Prone positioning during ex vivo lung perfusion influences regional edema accumulation[J]. J Surg Res, 2019, 239: 300-308.
64
Niikawa H, Okamoto T, Ayyat KS, et al. Successful lung transplantation after acellular ex vivo lung perfusion with prone positioning[J]. Ann Thorac Surg, 2020, 110(4): e285-e287.
[1] 轩晨昊, 许红阳. 降钙素原对双肺移植患者术后痰培养阳性的预测价值研究[J]. 中华危重症医学杂志(电子版), 2023, 16(03): 211-214.
[2] 史孟杰, 贺仕才, 刘斐, 闫燕, 代毅, 王辉. 对miR-206在大鼠下肢缺血再灌注损伤过程中炎症反应的影响分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 249-255.
[3] 张秀杨, 张龙飞, 陈世远, 高涌. 缺氧诱导因子1α介导单羧酸转运蛋白1表达参与短链脂肪酸对肠道缺氧保护作用的研究[J]. 中华普通外科学文献(电子版), 2023, 17(01): 18-23.
[4] 张楠, 张瑀, 周萃星, 李正胜, 季诺, 薛冬, 陈依梦. N6-甲基腺嘌呤甲基化转移酶3在肾脏缺血再灌注损伤中动态变化分析[J]. 中华移植杂志(电子版), 2023, 17(06): 343-348.
[5] 张星哲, 郑秉暄, 邓格, 豆猛, 石玉婷, 卫田, 郭映聪, 韩锋, 赵艳龙, 丁晨光, 田普训. 髓源性抑制细胞通过抑制炎症反应减轻小鼠肾脏缺血再灌注损伤[J]. 中华移植杂志(电子版), 2023, 17(01): 42-46.
[6] 疏文志, 杨梦凡, 潘斌华, 苏仁义, 林祖源, 杨墨丹, 张镇胜, 宋一粟, 卢正阳, 郑树森, 徐骁, 魏绪勇. 人羊膜上皮干细胞通过调节M1/M2型巨噬细胞极化减轻小鼠肝脏缺血再灌注损伤的实验研究[J]. 中华移植杂志(电子版), 2023, 17(01): 36-41.
[7] 中华医学会器官移植学分会肺移植学组, 国家肺移植质控中心. 新型冠状病毒感染肺移植受者选择中国专家建议[J]. 中华移植杂志(电子版), 2023, 17(01): 13-16.
[8] 于长江, 赵敏杰, 龚建平. 库普弗细胞在肝移植中的作用研究进展[J]. 中华移植杂志(电子版), 2022, 16(05): 314-318.
[9] 王桂龙, 顾正峰, 吴金波, 胡春晓, 秦钟, 张昕, 陈静瑜. 双肺移植手术室内拔管二例[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 138-140.
[10] 关明函, 薛志强. 右美托咪定改善大鼠脑缺血再灌注后脑损伤的研究[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 270-276.
[11] 夏金根, 胡诗雨. 体外二氧化碳清除技术的重症应用场景[J]. 中华重症医学电子杂志, 2023, 09(01): 40-45.
[12] 杨梦琦, 马慧芬, 訾阳, 王楠, 杜冰玉, 常万鹏, 于少泓. 马黛茶对脑血管疾病防治作用的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 235-240.
[13] 张敏洁, 张小杉, 段莎莎, 施依璐, 赵捷, 白天昊, 王雅晳. 氢气治疗心肌缺血再灌注损伤的作用机制及展望[J]. 中华临床医师杂志(电子版), 2023, 17(06): 744-748.
[14] 张敏洁, 王雅晳, 段莎莎, 施依璐, 付文艳, 赵海玥, 张小杉. 基于GEO数据库和生物信息学分析筛选大鼠心肌缺血再灌注损伤相关潜在通路和靶点[J]. 中华临床医师杂志(电子版), 2023, 17(04): 438-445.
[15] 李宁, 刘言, 林慧庆. 肺移植供肺缺血再灌注损伤的机制及预防[J]. 中华胸部外科电子杂志, 2023, 10(04): 247-256.
阅读次数
全文


摘要