切换至 "中华医学电子期刊资源库"

中华移植杂志(电子版) ›› 2023, Vol. 17 ›› Issue (06) : 343 -348. doi: 10.3877/cma.j.issn.1674-3903.2023.06.004

论著

N6-甲基腺嘌呤甲基化转移酶3在肾脏缺血再灌注损伤中动态变化分析
张楠1, 张瑀1, 周萃星1, 李正胜1, 季诺1, 薛冬1, 陈依梦1,()   
  1. 1. 213003 常州,苏州大学附属第三医院泌尿外科
  • 收稿日期:2023-10-18 出版日期:2023-12-25
  • 通信作者: 陈依梦
  • 基金资助:
    江苏省自然科学基金(BK20200180,BK20211064); 常州市科技计划(CE20235059,CJ20230051); 常州市医学重点学科(CZXK202209); 常州市十四五卫生健康高层次人才培养工程(2022260)

Dynamic change analysis of N6-methyladenosine methyltransferase-like 3 in renal ischemia-reperfusion injury

Nan Zhang1, Yu Zhang1, Cuixing Zhou1, Zhengsheng Li1, Nuo Ji1, Dong Xue1, Yimeng Chen1,()   

  1. 1. Department of Urology, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
  • Received:2023-10-18 Published:2023-12-25
  • Corresponding author: Yimeng Chen
引用本文:

张楠, 张瑀, 周萃星, 李正胜, 季诺, 薛冬, 陈依梦. N6-甲基腺嘌呤甲基化转移酶3在肾脏缺血再灌注损伤中动态变化分析[J/OL]. 中华移植杂志(电子版), 2023, 17(06): 343-348.

Nan Zhang, Yu Zhang, Cuixing Zhou, Zhengsheng Li, Nuo Ji, Dong Xue, Yimeng Chen. Dynamic change analysis of N6-methyladenosine methyltransferase-like 3 in renal ischemia-reperfusion injury[J/OL]. Chinese Journal of Transplantation(Electronic Edition), 2023, 17(06): 343-348.

目的

分析N6-甲基腺嘌呤(m6A)甲基化转移酶3(METTL3)在肾脏缺血再灌注损伤(IRI)大鼠动物模型中的动态变化。

方法

取健康成年雄性SD大鼠20只,根据随机数字法将大鼠分为IRI组及假手术组,IRI组根据缺血再灌注后不同时间分为IRI 24 h组、IRI 48 h组和IRI 72 h组,每组5只大鼠。测定大鼠血清肌酐和尿素氮水平,并进行肾组织HE染色。采用实时定量聚合酶链式反应检测METTL3 mRNA相对转录水平,采用蛋白质印迹法检测METTL3蛋白相对表达量。使用单因素方差分析进行多组间比较,组间两两比较采用LSD法;当数据不满足正态分布和方差齐性时,使用Kruskal-Wallis H检验进行多组间比较,两两比较采用Bonfferoni检验进行分析。使用Pearson法进行相关性分析。P<0.05为差异有统计学意义。

结果

假手术组以及IRI 24 h、48 h和72 h组大鼠血清肌酐分别为(15.8±2.28)、(57.8±6.50)、(37.0±6.00)和(29.8±5.02)μmol/L,尿素氮分别为(3.86±0.45)、(16.48±2.49)、(7.09±0.91)和(5.49±0.75)mmol/L,差异均有统计学意义(F=56.44和81.83,P均<0.05)。大鼠肾脏组织病理染色提示假手术组大鼠肾脏组织形态正常,IRI 24 h时已出现急性病变,IRI 48 h时急性病变加重,IRI 72 h时急性病变仍明显。假手术组以及IRI 24 h、48 h和72 h组大鼠总m6A相对修饰水平分别为(1.00±0.36)、(8.53±3.29)、(4.41±1.12)和(2.40±0.93),METTL3蛋白相对表达量分别为(1.00±0.29)、(6.37±2.59)、(2.06±0.76)和(1.55±0.63),METTL3 mRNA相对转录水平分别为(1.00±0.04)、(2.52±0.67)、(1.86±0.21)和(0.84±0.22),差异均有统计学意义(F=16.43、15.54和13.56,P均<0.05)。总m6A修饰水平与血清肌酐和尿素氮均呈正相关(r=0.7963和0.7670,P均<0.05);METTL3 mRNA水平与血清肌酐、尿素氮和总m6A修饰水平均呈正相关(r=0.7208、0.7957和0.8313,P均<0.05)。

结论

在IRI早期,METTL3表达水平和总m6A修饰水平均升高,提示METTL3和总m6A修饰水平对早期实时评估IRI可能具有重要意义。

Objective

To analyze the dynamic changes of N6-methyladenine (m6A) methyltransferase-like 3 (METTL3) in renal ischemia-reperfusion injury (IRI) rat models.

Methods

Twenty healthy adult male SD rats were selected and divided into IRI group and sham operation group (Sham group) according to the random number method. The IRI group was further divided into three subgroups as IRI 24 h group, IRI 48 h group and IRI 72 h group according to different phases after renal ischemia-reperfusion. There are 5 rats in each group. Rat serum creatinine and urea nitrogen levels were measured, and renal tissue HE staining was performed. Real-time quantitative polymerase chain reaction was used to detect the relative transcription level of METTL3 mRNA, and Western blot was used to detect the relative expression of METTL3 protein. One-way analysis of variance was used for comparison among multiple groups, and the LSD method was used for pairwise comparisons. When the data did not meet normal distribution and homogeneity of variance, the Kruskal-Wallis H test was used for comparisons between multiple groups, and the Bonfferoni method was used for pairwise comparisons. Correlation analysis was performed using the Pearson method. P<0.05 was regarded as statistically significant.

Results

The serum creatinine of rats in the Sham group and the IRI 24 h, 48 h and 72 h groups were (15.8±2.28), (57.8±6.50), (37.0±6.00) and (29.8±5.02) μmol/L, respectively, and the urea nitrogen of all groups were (3.86±0.45), (16.48±2.49), (7.09±0.91) and (5.49±0.75) mmol/L, respectively. The differences were statistically significant (F=56.44 and 81.83, P all <0.05). Pathological staining of rat kidney tissue showed that the morphology of the rat kidney tissue in the Sham group was normal, and acute lesions had appeared in the IRI 24 h group, aggravated in the IRI 48 h group, and were still obvious in the IRI 72 h group. The relative modification levels of total m6A in the Sham group and the IRI 24 h, 48 h and 72 h groups were (1.00±0.36), (8.53±3.29), (4.41±1.12) and (2.40±0.93), respectively. Relative expression levels of METTL3 protein were (1.00±0.29), (6.37±2.59), (2.06±0.76) and (1.55±0.63), respectively. The relative transcription levels of METTL3 mRNA were (1.00±0.04), (2.52±0.67), (1.86±0.21) and (0.84±0.22), respectively. The differences were all statistically significant (F=16.43, 15.54 and 13.56, all P<0.05). The total m6A modification level was positively correlated with serum creatinine and urea nitrogen (r=0.7963 and 0.7670, all P<0.05). The mRNA level of METTL3 was positively correlated with serum creatinine, urea nitrogen and total m6A modification level (r=0.7208, 0.7957 and 0.8313, all P<0.05).

Conclusions

In the early process of IRI, the expression level of METTL3 and the level of total m6A modification increased, suggesting that the level of METTL3 and total m6A modification may be of great significance for the early real-time assessment of IRI.

表1 实时定量聚合酶链式反应引物序列
图1 假手术组与IRI各亚组大鼠肾脏组织HE染色结果(200×)注:IRI.缺血再灌注损伤
表1 假手术组及IRI各亚组大鼠血清肌酐和尿素氮比较(±s)
图2 假手术组与IRI各亚组大鼠肾实质组织总m6A mRNA修饰及METTL3蛋白表达情况注:a.斑点印记测定各组大鼠肾实质组织m6A mRNA修饰情况,内参为亚甲基蓝;b.蛋白质印迹法检测各组大鼠肾实质组织METTL3蛋白相对表达情况,内参为GAPDH; IRI.缺血再灌注损伤;m6A. N6-甲基腺嘌呤;METTL.甲基化转移酶;GAPDH.甘油醛-3-磷酸脱氢酶
表2 假手术组与IRI各亚组大鼠总m6A修饰水平及METTL3表达水平比较(±s)
图3 大鼠肾脏组织总m6A修饰水平与血清肌酐和尿素氮相关性分析(n=20)注:a.总m6A修饰水平与血清肌酐相关性;b.总m6A修饰水平与尿素氮的相关性;m6A. N6-甲基腺嘌呤
图4 大鼠肾脏组织METTL3 mRNA水平与血清肌酐、尿素氮和总m6A修饰水平相关性分析(n=20)注:a.METTL3 mRNA水平与血清肌酐的相关性;b.METTL3 mRNA水平与尿素氮的相关性;c.METTL3 mRNA水平与总m6A修饰水平的相关性;METTL.甲基化转移酶;m6A. N6-甲基腺嘌呤
1
Linkermann A, Chen G, Dong G, et al. Regulated cell death in AKI[J]. J Am Soc Nephrol, 2014, 25 (12):2689-2701.
2
He L, Wei Q, Liu J, et al. AKI on CKD: heightened injury, suppressed repair, and the underlying mechanisms[J]. Kidney Int, 2017, 92 (5):1071-1083.
3
Tang J, Zhuang S. Histone acetylation and DNA methylation in ischemia/reperfusion injury[J]. Clin Sci (Lond), 2019, 133 (4):597-609.
4
Jiang X, Liu B, Nie Z, et al. The role of m6A modification in the biological functions and diseases[J]. Signal Transduct Target Ther, 2021, 6 (1): 74.
5
Yin S, Zhang Q, Yang J, et al. TGFβ-incurred epigenetic aberrations of miRNA and DNA methyltransferase suppress Klotho and potentiate renal fibrosis[J]. Biochim Biophys Acta Mol Cell Res, 2017, 1864 (7): 1207-1216.
6
Li X, Fan X, Yin X, et al. Alteration of N6-methyladenosine epitranscriptome profile in unilateral ureteral obstructive nephropathy[J]. Epigenomics, 2020, 12 (14):1157-1173.
7
Xu Y, Yuan XD, Wu JJ, et al. The N6-methyladenosine mRNA methylase METTL14 promotes renal ischemic reperfusion injury via suppressing YAP1[J]. J Cell Biochem, 2020, 121 (1):524-533.
8
Ostermann M, Bellomo R, Burdmann EA, et al. Controversies in acute kidney injury: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Conference[J]. Kidney Int, 2020, 98 (2): 294-309.
9
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods, 2001, 25 (4):402-408.
10
Amaral CD, Francescato H, Coimbra T, et al. Resveratrol attenuates cisplatin-induced nephrotoxicity in rats[J]. Archives of toxicology, 2008, 82 (6): 363-370.
11
He W, Wang Y, Zhang MZ, et al. Sirt1 activation protects the mouse renal medulla from oxidative injury[J]. J Clin Invest, 2010, 120 (4): 1056-1068.
12
Xu S, Gao Y, Zhang Q, et al. SIRT1/3 activation by resveratrol attenuates acute kidney injury in a septic rat model[J]. Oxid Med Cell Longev, 2016, 2016:7296092.
13
Bayrak O, Uz E, Bayrak R, et al. Curcumin protects against ischemia/reperfusion injury in rat kidneys[J]. World J Urol, 2008, 26(3):285-291.
14
Fan H, Yang HC, You L, et al. The histone deacetylase, SIRT1, contributes to the resistance of young mice to ischemia/reperfusion-induced acute kidney injury[J]. Kidney Int, 2013, 83 (3):404-413.
15
Kuhad A, Pilkhwal S, Sharma S, et al. Effect of curcumin on inflammation and oxidative stress in cisplatin-induced experimental nephrotoxicity[J]. J Agric Food Chem, 2007, 55 (25): 10150-10155.
16
Memis D, Hekimoglu S, Sezer A, et al. Curcumin attenuates the organ dysfunction caused by endotoxemia in the rat[J]. Nutrition, 2008, 24 (11-12): 1133-1138.
17
Naito M, Bomsztyk K, Zager RA. Endotoxin mediates recruitment of RNA polymeraseⅡto target genes in acute renal failure[J]. J Am Soc Nephrol, 2008, 19 (7): 1321-1330.
18
Chen Y, Zhou C, Sun Y, et al. m6A RNA modification modulates gene expression and cancer-related pathways in clear cell renal cell carcinoma[J]. Epigenomics, 2020, 12 (2): 87-99.
19
Munshi R, Johnson A, Siew ED, et al. MCP-1 gene activation marks acute kidney injury[J]. J Am Soc Nephrol, 2011, 22 (1): 165-175.
20
Chatterjee P.K, Brown PA, Cuzzocrea S, et al. Calpain inhibitor-1 reduces renal ischemia/reperfusion injury in the rat[J]. Kidney Int, 2001, 59 (6): 2073-2083.
21
Li F, Chen S, Yu J, et al. Interplay of m6 A and histone modifications contributes to temozolomide resistance in glioblastoma[J]. Clin Transl Med, 2021, 11 (9): e553.
22
Zhou X, Zang X, Ponnusamy M, et al. Enhancer of zeste homolog 2 inhibition attenuates renal fibrosis by maintaining smad7 and phosphatase and tensin homolog expression[J]. J Am Soc Nephrol, 2016, 27 (7): 2092-2108.
23
Zhou X, Xiong C, Tolbert E, et al. Targeting histone methyltransferase enhancer of zeste homolog-2 inhibits renal epithelial-mesenchymal transition and attenuates renal fibrosis[J]. FASEB J, 2018, 32 (11): fj201800237R.
24
Meng F, Liu Y, Chen Q, et al. METTL3 contributes to renal ischemia-reperfusion injury by regulating Foxd1 methylation[J]. Am J Physiol Renal Physiol, 2020, 319 (5): F839-F847.
25
An Y, Duan H, The role of m6A RNA methylation in cancer metabolism[J]. Mol Cancer, 2022, 21 (1): 14.
[1] 唐亦骁, 陈峻, 连正星, 胡海涛, 鲁迪, 徐骁, 卫强. 白果内酯对小鼠肝缺血再灌注损伤保护作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 278-282.
[2] 杨柳, 陈佳, 孙雅娟, 陈娇, 谭明超, 龚明福. 抗中性粒细胞胞浆抗体相关性血管炎的胸部CT 及临床特征分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 744-749.
[3] 孙璐, 蒋亚玲, 陈凌君. 布托啡诺对脑缺血再灌注损伤大鼠神经炎症和JAK2/STAT3信号通路的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 344-350.
[4] 周学锋, 董哲毅, 冯哲, 蔡广研, 陈香美. 糖尿病肾脏疾病中西医结合诊疗指南计划书[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 301-305.
[5] 程柏凯, 杨光. 高胰岛素-正葡萄糖钳夹技术评估慢性肾脏病患者胰岛素抵抗的研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(06): 334-339.
[6] 王小龙, 吴杰, 冯哲, 文浩, 段姝伟, 梁爽, 蔡广研. 心内科病房急性肾损伤且行肾脏替代治疗患者短期预后不良的危险因素分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 241-248.
[7] 冯熔熔, 苏晓乐, 王利华. 慢性肾脏病患者并发心血管疾病相关生物标志物研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 273-278.
[8] 郭俊楠, 林惠, 任艺林, 乔晞. 氨基酸代谢异常在急性肾损伤向慢性肾脏病转变中的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 283-287.
[9] 崔文鹏. 腹膜透析在老年终末期肾脏疾病患者中的应用[J/OL]. 中华肾病研究电子杂志, 2024, 13(05): 300-300.
[10] 刘俊, 陈客宏. 终末期肾脏病患者运动干预的作用研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 219-225.
[11] 李京, 牛博, 刘晓蓓, 魏新雪, 黄荣. circ-SESN2 沉默靶向调控miRNA-23a-5p/ULK1 在神经细胞氧化应激损伤中的作用机制研究[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 263-272.
[12] 邱英鹏, 李欣雨, 邱海波, 刘松桥, 张凌, 于湘友, 秦秉玉, 蒲莹莹, 赵佳钰, 刘永军, 肖月, 杨毅. 连续性肾脏替代治疗质量控制指标体系的建立及验证[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 351-357.
[13] 向阳, 史黎炜, 肖月, 邱海波, 杨毅, 刘松桥, 邱英鹏, 张莹. 连续性肾脏替代治疗在我国五地区重症医学科的效率分析[J/OL]. 中华重症医学电子杂志, 2024, 10(04): 358-363.
[14] 奚培培, 周加军. 慢性肾脏病患者肌少症机制和诊治的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 491-495.
[15] 孙双权, 孙玮玮, 王勇, 方道成, 温晖. 肾脏混合性上皮和间质肿瘤一例[J/OL]. 中华临床医师杂志(电子版), 2024, 18(05): 512-515.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?