切换至 "中华医学电子期刊资源库"

中华移植杂志(电子版) ›› 2021, Vol. 15 ›› Issue (04) : 244 -249. doi: 10.3877/cma.j.issn.1674-3903.2021.04.012

综述

实体器官移植后移植物长期存活评估相关生物标志物研究进展
胡正斌1, 周鑫1,(), 熊艳1, 范晓礼1, 范志鹏1, 叶啟发2   
  1. 1. 430071 武汉大学中南医院肝胆疾病研究院 武汉大学肝胆疾病研究院 武汉大学移植医学中心 国家人体捐献器官获取质量控制中心 移植医学技术湖北省重点实验室 湖北省天然高分子生物肝临床医学研究中心 湖北省天然高分子基医用材料构建工程技术研究中心
    2. 430071 武汉大学中南医院肝胆疾病研究院 武汉大学肝胆疾病研究院 武汉大学移植医学中心 国家人体捐献器官获取质量控制中心 移植医学技术湖北省重点实验室 湖北省天然高分子生物肝临床医学研究中心 湖北省天然高分子基医用材料构建工程技术研究中心;410013 长沙,中南大学湘雅三医院移植中心 卫生部移植医学工程技术研究中心
  • 收稿日期:2020-12-30 出版日期:2021-08-25
  • 通信作者: 周鑫
  • 基金资助:
    国家自然科学基金(81970548); 医学腾飞计划——"转化医学、医学+平台建设项目"(临床医学)(TFLC2018003); 武汉市科技计划项目(2019020701011485)

Research progress on biomarkers related to long-term graft survival evaluation after solid organ transplantation

Zhengbin Hu1, Xin Zhou1,(), Yan Xiong1, Xiaoli Fan1, Zhipeng Fan1, Qifa Ye2   

  1. 1. Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, WuHan 430071, China
    2. Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, WuHan 430071, China; Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Transplantation center of Xiangya Third Hospital of Central South University, Changsha 410013, China
  • Received:2020-12-30 Published:2021-08-25
  • Corresponding author: Xin Zhou
引用本文:

胡正斌, 周鑫, 熊艳, 范晓礼, 范志鹏, 叶啟发. 实体器官移植后移植物长期存活评估相关生物标志物研究进展[J]. 中华移植杂志(电子版), 2021, 15(04): 244-249.

Zhengbin Hu, Xin Zhou, Yan Xiong, Xiaoli Fan, Zhipeng Fan, Qifa Ye. Research progress on biomarkers related to long-term graft survival evaluation after solid organ transplantation[J]. Chinese Journal of Transplantation(Electronic Edition), 2021, 15(04): 244-249.

随着器官移植手术技术的成熟,实体器官移植物长期存活逐渐成为移植术后的首要任务。实体器官移植后移植物功能丢失的主要原因是慢性移植物损伤,但其潜在机制尚不明确。移植物病理活检是用于诊断移植物功能状况的金标准,但因活检穿刺操作的侵入性以及取样的局限性,阻碍移植物功能状况的常规评估。因此,微损伤非侵入性样品(例如外周血或尿液)功能性监测,更利于实体器官移植术后移植物的管理。本文对实体器官移植中移植物长期存活的生物标志物研究进展作一综述。

With the maturity of organ transplantation technology, the long-term survival of solid organ grafts has gradually become the primary task after transplantation. The main cause of graft function loss after solid organ transplantation is chronic graft damage. However, its potential mechanism is not clear. Graft pathological biopsy is the gold standard for the diagnosis of graft function, but the routine evaluation of graft function is hindered by the invasiveness of biopsy puncture and the limitation of sampling. Therefore, functional monitoring of micro injury non-invasive samples (such as peripheral blood or urine) is more conducive to the management of grafts after solid organ transplantation. This paper will systematically review the literature on biomarkers of long-term graft survival in solid organ transplantation.

表1 实体器官移植后AR生物标志物
表2 器官移植后CAD生物标志物
表3 器官移植后移植免疫耐受生物标志物
5
Kruger B, Banas MC, Walberer A, et al. A comprehensive genotype-phenotype interaction of different Toll-like receptor variations in a renal transplant cohort[J]. Clin Sci, 2010, 119(12): 535-544.
6
Dhillon N, Walsh L, Kruger B, et al. A single nucleotide polymorphism of Toll-like receptor 4 identifies the risk of developing graft failure after liver transplantation[J]. J Hepatol, 2010, 53(1): 67-72.
7
Ducloux D, Deschamps M, Yannaraki M, et al. Relevance of Toll-like receptor-4 polymorphisms in renal transplantation[J]. Kidney Int, 2005, 67(6): 2454-2461.
8
Eid AJ, Brown RA, Paya CV, et al. Association between toll-like receptor polymorphisms and the outcome of liver transplantation for chronic hepatitis C virus[J]. Transplantation, 2007, 84(4): 511-516.
9
Hwang YH, Ro H, Choi I, et al. Impact of polymorphisms of TLR4/CD14 and TLR3 on acute rejection in kidney transplantation[J]. Transplantation, 2009, 88(5): 699-705.
10
Kastelijn EA, van Moorsel CH, Rijkers GT, et al. Polymorphisms in innate immunity genes associated with development of bronchiolitis obliterans after lung transplantation[J]. J Heart Lung Transplant, 2010, 29(6): 665-671.
11
Naesens M, Butte AJ, Sarwal MM. C3 polymorphisms and outcomes of renal allografts[J]. N Engl J Med, 2009, 360(23): 2478-2479.
12
Naesens M, Li L, Ying L, et al. Expression of complement components differs between kidney allografts from living and deceased donors[J]. J Am Soc Nephrol, 2009, 20(8):1839-1851.
13
Li L, Wadia P, Chen R, et al. Identifying compartment-specific non-HLA targets after renal transplantation by integrating transcriptome and "antibodyome" measures[J]. Proc Natl Acad Sci USA, 2009, 106(11): 4148-4153.
14
Sutherland SM, Li L, Sigdel TK, et al. Protein microarrays identify antibodies to protein kinase Czeta that are associated with a greater risk of allograft loss in pediatric renal transplant recipients[J]. Kidney Int, 2009, 76(12): 1277-1283.
15
Li L, Chen A, Chaudhuri A, et al. Compartmental localization and clinical relevance of MICA antibodies after renal transplantation[J]. Transplantation, 2010, 89(3): 312-319.
16
Zou Y, Stastny P, Susal C, et al. Antibodies against MICA antigens and kidney-transplant rejection[J]. N Engl J Med, 2007, 357(13):1293-1300.
17
Vasconcellos LM, Schachter AD, Zheng XX, et al. Cytotoxic lymphocyte gene expression in peripheral blood leukocytes correlates with rejecting renal allografts[J]. Transplantation1998, 66(5): 562-566.
18
Sarwal M, Chua MS, Kambham N, et al. Molecular heterogeneity in acute renal allograft rejection identified by DNA microarray profiling[J]. N Engl J Med, 2003, 349(2): 125-138.
19
Hertz MI, Aurora P, Christie JD, et al. Scientific Registry of the International Society for Heart and Lung Transplantation: introduction to the 2009 Annual Reports[J]. J Heart Lung Transplant, 2009, 28(10): 989-992.
20
Collins AJ, Foley RN, Chavers B, et al. United States Renal Data System 2011 Annual Data Report: Atlas of chronic kidney disease & end-stage renal disease in the United States[J]. Am J Kidney Dis, 2012, 59(1 Suppl 1):A7, e1-e420.
21
Choy JC. Granzymes and perforin in solid organ transplant rejection[J]. Cell Death Differ, 2010, 17(4): 567-576.
22
Kotsch K, Mashreghi MF, Bold G, et al. Enhanced granulysin mRNA expression in urinary sediment in early and delayed acute renal allograft rejection[J]. Transplantation, 2004, 77(12): 1866-1875.
23
Galante NZ, Camara NO, Kallas EG, et al. Noninvasive immune monitoring assessed by flow cytometry and real time RT-PCR in urine of renal transplantation recipients[J]. Transpl Immunol, 2006, 16(2): 73-80.
24
Krukemeyer MG, Moeller J, Morawietz L, et al. Description of B lymphocytes and plasma cells, complement, and chemokines/receptors in acute liver allograft rejection[J]. Transplantation, 2004, 78(1): 65-70.
25
Hauser IA, Spiegler S, Kiss E, et al. Prediction of acute renal allograft rejection by urinary monokine induced by IFN-gamma (MIG)[J]. J Am Soc Nephrol, 2005, 16(6): 1849-1858.
26
Schaub S, Nickerson P, Rush D, et al. Urinary CXCL9 and CXCL10 levels correlate with the extent of subclinical tubulitis[J]. Am J Transplant, 2009, 9(6): 1347-1353.
27
Belperio JA, Keane MP, Burdick MD, et al. Role of CXCL9/CXCR3 chemokine biology during pathogenesis of acute lung allograft rejection[J]. J Immunol, 2003, 171(9): 4844-4852.
28
Hancock WW, Gao W, Csizmadia V, et al. Donor-derived IP-10 initiates development of acute allograft rejection[J]. J Exp Med, 2001, 193(8): 975-980.
29
Shyu AB, Wilkinson MF, van Hoof A. Messenger RNA regulation: to translate or to degrade[J]. EMBO J, 2008, 27(3): 471-481.
30
Anglicheau D, Sharma VK, Ding R, et al. MicroRNA expression profiles predictive of human renal allograft status[J]. Proc Natl Acad Sci USA, 2009, 106(13): 5330-5335.
31
O′Connell RM, Kahn D, Gibson WS, et al. MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development[J]. Immunity, 2010, 33(4): 607-619.
32
Harris A, Krams SM, Martinez OM. MicroRNAs as immune regulators: implications for transplantation[J]. Am J Transplant, 2010, 10(4): 713-719.
33
Dall A, Hariharan S. BK virus nephritis after renal transplantation[J]. Clin J Am Soc Nephrol, 2008, 3(Suppl 2): S68-S75.
34
Zarkhin V, Kambham N, Li L, et al. Characterization of intra-graft B cells during renal allograft rejection[J]. Kidney Int, 2008, 74(5): 664-673.
35
Dragun D, Müller DN, Bräsen JH, et al. Angiotensin II type 1-receptor activating antibodies in renal-allograft rejection[J]. N Engl J Med, 2005, 352(6): 558-569.
36
Terasaki PI, Ozawa M, Castro R. Four-year follow-up of a prospective trial of HLA and MICA antibodies on kidney graft survival[J]. Am J Transplant, 2007, 7(2): 408-415.
1
Gautam A, Morrissey PE, Brem AS, et al. Use of an immune function assay to monitor immunosuppression for treatment of post-transplant lymphoproliferative disorder[J]. Pediatr Transplant, 2006, 10(5): 613-616.
2
Kowalski RJ, Post DR, Mannon RB, et al. Assessing relative risks of infection and rejection: a meta-analysis using an immune function assay[J]. Transplantation, 2006, 82(5): 663-668.
3
Terasaki P, Lachmann N, Cai J. Summary of the effect of de novo HLA antibodies on chronic kidney graft failure[J]. Clin Transpl, 2006:455-462.
4
Israni A, Leduc R, Holmes J, et al. Single-nucleotide polymorphisms, acute rejection, and severity of tubulitis in kidney transplantation, accounting for center-to-center variation[J]. Transplantation, 2010, 90(12): 1401-1408.
37
Lerut E, Van Damme B, Noizat-Pirenne F, et al. Duffy and Kidd blood group antigens: minor histocompatibility antigens involved in renal allograft rejection?[J]. Transfusion, 2007, 47(1): 28-40.
38
Joosten SA, Sijpkens YW, van Ham V, et al. Antibody response against the glomerular basement membrane protein agrin in patients with transplant glomerulopathy[J]. Am J Transplant, 2005, 5(2): 383-393.
39
Chen R, Sigdel TK, Li L, et al. Differentially expressed RNA from public microarray data identifies serum protein biomarkers for cross-organ transplant rejection and other conditions[J]. PLoS Comput Biol, 2010, 6(9): e1000940.
40
Veale JL, Liang LW, Zhang Q, et al. Noninvasive diagnosis of cellular and antibody-mediated rejection by perforin and granzyme B in renal allografts[J]. Hum Immunol, 2006, 67(10): 777-786.
41
Alakulppi NS, Kyllonen LE, Partanen J, et al. Diagnosis of acute renal allograft rejection by analyzing whole blood mRNA expression of lymphocyte marker molecules[J]. Transplantation, 2007, 83(6): 791-798.
42
Graziotto R, Del Prete D, Rigotti P, et al. Perforin, Granzyme B, and fas ligand for molecular diagnosis of acute renal-allograft rejection: analyses on serial biopsies suggest methodological issues[J]. Transplantation, 2006, 81(8): 1125-1132.
43
Sarwal MM, Jani A, Chang S, et al. Granulysin expression is a marker for acute rejection and steroid resistance in human renal transplantation[J]. Hum Immunol, 2001, 62(1): 21-31.
44
Li B, Hartono C, Ding R, et al. Noninvasive diagnosis of renal-allograft rejection by measurement of messenger RNA for perforin and granzyme B in urine[J]. N Engl J Med, 2001, 344(13): 947-954.
45
Sis B, Jhangri GS, Bunnag S, et al. Endothelial gene expression in kidney transplants with alloantibody indicates antibody-mediated damage despite lack of C4d staining[J]. Am J Transplant, 2009, 9(10): 2312-2323.
46
Ihn H. Pathogenesis of fibrosis: role of TGF-beta and CTGF[J]. Curr Opin Rheumatol, 2002, 14(6): 681-685.
47
Booth AJ, Csencsits-Smith K, Wood SC, et al. Connective tissue growth factor promotes fibrosis downstream of TGFbeta and IL-6 in chronic cardiac allograft rejection[J]. Am J Transplant, 2010, 10(2): 220-230.
48
Shi Y, Tu Z, Bao J, et al. Urinary connective tissue growth factor increases far earlier than histopathological damage and functional deterioration in early chronic renal allograft injury[J]. Scand J Urol Nephrol, 2009, 43(5): 390-399.
49
Luo GH, Lu YP, Song J, et al. Inhibition of connective tissue growth factor by small interfering RNA prevents renal fibrosis in rats undergoing chronic allograft nephropathy[J]. Transplant Proc, 2008, 40(7): 2365-2369.
50
Ho J, Rush DN, Gibson IW, et al. Early urinary CCL2 is associated with the later development of interstitial fibrosis and tubular atrophy in renal allografts[J]. Transplantation, 2010, 90(4): 394-400.
51
van Timmeren MM, van den Heuvel MC, Bailly V, et al. Tubular kidney injury molecule-1 (KIM-1) in human renal disease[J]. J Pathol, 2007, 212(2): 209-217.
52
Han WK, Bailly V, Abichandani R, et al. Kidney injury molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury[J]. Kidney Int, 2002, 62(1): 237-244.
53
Malyszko J, Koc-Zorawska E, Malyszko JS, et al. Kidney injury molecule-1 correlates with kidney function in renal allograft recipients[J]. Transplant Proc, 2010, 42(10): 3957-3959.
54
van Timmeren MM, Vaidya VS, van Ree RM, et al. High urinary excretion of kidney injury molecule-1 is an independent predictor of graft loss in renal transplant recipients[J]. Transplantation, 2007, 84(12): 1625-1630.
55
Zhou Y, Vaidya VS, Brown RP, et al. Comparison of kidney injury molecule-1 and other nephrotoxicity biomarkers in urine and kidney following acute exposure to gentamicin, mercury, and chromium[J]. Toxicol Sci, 2008, 101(1): 159-170.
56
Kurian SM, Heilman R, Mondala TS, et al. Biomarkers for early and late stage chronic allograft nephropathy by proteogenomic profiling of peripheral blood[J]. PLoS One, 2009, 4(7): e6212.
57
Ashton-Chess J, Giral M, Mengel M, et al. Tribbles-1 as a novel biomarker of chronic antibody-mediated rejection[J]. J Am Soc Nephrol, 2008, 19(6): 1116-1127.
58
Orlando G, Hematti P, Stratta RJ, et al. Clinical operational tolerance after renal transplantation: current status and future challenges[J]. Ann Surg, 2010, 252(6): 915-928.
59
Martínez-Llordella M, Lozano JJ, Puig-Pey I, et al. Using transcriptional profiling to develop a diagnostic test of operational tolerance in liver transplant recipients[J]. J Clin Invest, 2008, 118(8): 2845-2857.
60
Newell KA, Asare A, Kirk AD, et al. Identification of a B cell signature associated with renal transplant tolerance in humans[J]. J Clin Invest, 2010, 120(6): 1836-1847.
61
Sagoo P, Perucha E, Sawitzki B, et al. Development of a cross-platform biomarker signature to detect renal transplant tolerance in humans[J]. J Clin Invest, 2010, 120(6): 1848-1861.
[1] 代雯荣, 赵丽娟, 李智慧. 细胞外囊泡对胚胎着床影响的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 616-620.
[2] 罗丹, 孔为民, 陈姝宁, 赵小玲, 谢云凯. 子宫内膜异位症患者在位及异位内膜上皮细胞-间充质转化相关生物标志物的变化[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 530-539.
[3] 魏徐, 张鸽, 伍金林. 新生儿脓毒症相关性凝血病的监测和治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 379-386.
[4] 李越洲, 张孔玺, 李小红, 商中华. 基于生物信息学分析胃癌中PUM的预后意义[J]. 中华普通外科学文献(电子版), 2023, 17(06): 426-432.
[5] 中国康复医学会器官移植康复专业委员会. 成人实体器官移植后糖尿病管理专家共识[J]. 中华移植杂志(电子版), 2023, 17(04): 205-220.
[6] 李腾成, 狄金明. 2023 V1版前列腺癌NCCN指南更新要点解读[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 313-318.
[7] 陈坤, 何傅梅, 方婷, 陈文瑞. 血清sCD73与EGFR/ALK野生型非小细胞肺癌免疫治疗效果的相关性分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 504-507.
[8] 杜静怡, 徐兴祥. 循环肿瘤细胞在非小细胞肺癌中的研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 596-600.
[9] 陈安, 冯娟, 杨振宇, 杜锡林, 柏强善, 阴继凯, 臧莉, 鲁建国. 基于生物信息学分析CCN4在肝细胞癌中表达及其临床意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 702-707.
[10] 侍新宇, 孙金兵, 何宋兵. 血液生物标志物在直肠癌新辅助治疗中的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(03): 228-233.
[11] 王珊, 马清, 姚兰, 杨华昱. 老年维持性血透患者叶酸治疗与miR-150-5p血清水平的相关性研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 139-144.
[12] 胡霁云, 谢树才, 张丽娜. S100钙结合蛋白B与重症神经研究进展[J]. 中华重症医学电子杂志, 2023, 09(03): 298-303.
[13] 吴蓉菊, 向平超. COPD频繁急性加重表型与炎性因子相关性研究[J]. 中华临床医师杂志(电子版), 2023, 17(9): 939-947.
[14] 蔡荇, 郑瑞强. 肝素结合蛋白在脓毒症中的应用及研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(04): 487-490.
[15] 郭芳芳, 李珉珉. 狼疮肾炎无创生物标志物的研究进展[J]. 中华诊断学电子杂志, 2023, 11(04): 271-275.
阅读次数
全文


摘要