切换至 "中华医学电子期刊资源库"

中华移植杂志(电子版) ›› 2021, Vol. 15 ›› Issue (04) : 239 -243. doi: 10.3877/cma.j.issn.1674-3903.2021.04.011

综述

调节性T细胞在肝移植免疫诱导及治疗中的作用
刘桦1, 陈雅峻2, 龚建平2,()   
  1. 1. 400062 重庆市第五人民医院肝胆胰外科
    2. 400010,重庆医科大学附属第二医院肝胆外科
  • 收稿日期:2021-01-17 出版日期:2021-08-25
  • 通信作者: 龚建平
  • 基金资助:
    国家自然科学基金(81670599)

Immune induction and therapeutic effects of regulatory T cells in liver transplantation

Hua Liu1, Yajun Chen2, Jianping Gong2,()   

  1. 1. Department of Hepatobiliary Surgery, Chongqing Fifth People′s Hospital, Chongqing 400062, China
    2. Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
  • Received:2021-01-17 Published:2021-08-25
  • Corresponding author: Jianping Gong
引用本文:

刘桦, 陈雅峻, 龚建平. 调节性T细胞在肝移植免疫诱导及治疗中的作用[J]. 中华移植杂志(电子版), 2021, 15(04): 239-243.

Hua Liu, Yajun Chen, Jianping Gong. Immune induction and therapeutic effects of regulatory T cells in liver transplantation[J]. Chinese Journal of Transplantation(Electronic Edition), 2021, 15(04): 239-243.

诱导免疫耐受一直是肝移植术后的一大难题。调节性T细胞(Tregs)近年来被发现在维持自身免疫耐受中起重要作用。Tregs一方面通过高表达CD25及细胞毒性T淋巴细胞抗原4维持免疫稳态,另一方面大量表达免疫抑制分子IL-10、IL-35、TGF-β和环磷酸腺苷减轻免疫反应。通过体内诱导和体外扩增的方法可有效扩增Tregs。Tregs治疗的安全性、有效性以及与免疫抑制剂联用的疗效等问题是目前临床研究的重点。本文从Tregs诱导肝移植术后免疫耐受的机制、Tregs扩增以及Tregs过继治疗的临床潜力等方面进行综述。

Induction of immune tolerance has always been a major problem after liver transplantation. In recent years, regulatory T cells (Tregs) have been found to play an important role in maintaining autoimmune tolerance. On the one hand, Tregs maintain immune homeostasis through high expression of CD25 and cytotoxic T lymphocyte-associated antigen-4, and on the other hand, a large number of immunosuppressive molecules, IL-10, IL-35, TGF-β and cAMP, are expressed to reduce the immune response. Tregs can be effectively expanded by inducing expansion in vivo and expansion in vitro. The safety, effectiveness, and the efficacy of Tregs therapy and combination with immunosuppressive agents have become the focus of current clinical research. This article summarizes the application prospects of Tregs therapy from the above aspects.

表1 Tregs相关临床试验注册基本信息
1
Morris H, DeWolf S, Robins H, et al. Tracking donor-reactive T cells: Evidence for clonal deletion in tolerant kidney transplant patients[J]. Sci Transl Med, 2015, 7(272): 272ra10.
2
Zimmerer JM, Horne PH, Fisher MG, et al. Unique CD8+ T cell-mediated immune responses primed in the liver[J]. Transplantation, 2016, 100(9): 1907-1915.
3
Feng S, Bucuvalas J. Tolerance after liver transplantation: Where are we?[J]. Liver Transpl, 2017, 23(12): 1601-1614.
4
Sánchez-Fueyo A, Whitehouse G, Grageda N, et al. Applicability, safety, and biological activity of regulatory T cell therapy in liver transplantation[J]. Am J Transplant, 2020, 20(4): 1125-1136.
5
Whitehouse GP, Hope A, Sanchez-Fueyo A. Regulatory T-cell therapy in liver transplantation[J]. Transpl Int, 2017, 30(8): 776-784.
6
Vaikunthanathan T, Safinia N, Boardman D, et al. Regulatory T cells: tolerance induction in solid organ transplantation[J]. Clin Exp Immunol, 2017, 189(2): 197-210.
7
Halliday N, Williams C, Kennedy A, et al. CD86 is a selective CD28 ligand supporting FoxP3+ regulatory T cell homeostasis in the presence of high levels of CTLA-4[J]. Front Immunol, 2020, 11: 600000.
8
Heidari F, Ramezani A, Erfani N, et al. Indoleamine 2, 3-dioxygenase: A professional immunomodulator and its potential functions in immune related diseases[J]. Int Rev Immunol, 2020: 1-18.
9
Tang Q, Vincenti F. Transplant trials with Tregs: perils and promises[J]. J Clin Invest, 2017, 127(7): 2505-2512.
10
Safinia N, Grageda N, Scottà C, et al. Cell therapy in organ transplantation: Our experience on the clinical translation of regulatory T cells[J]. Front Immunol, 2018, 9: 354.
11
Ko MK, Shao H, Kaplan HJ, et al. CD73+ dendritic cells in cascading Th17 responses of experimental autoimmune uveitis-induced mice[J]. Front Immunol, 2020, 11: 601272.
12
Cao X, Cai SF, Fehniger TA, et al. Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance[J]. Immunity, 2007, 27(4): 635-646.
13
Okoye I, Xu L, Motamedi M, et al. Galectin-9 expression defines exhausted T cells and impaired cytotoxic NK cells in patients with virus-associated solid tumors[J]. J Immunother Cancer, 2020, 8(2): e001849.
14
Ronca V, Wootton G, Milani C, et al. The immunological basis of liver allograft rejection[J]. Front Immunol, 2020, 11: 2155.
15
Alvarez-Salazar EK, Cortés-Hernández A, Arteaga-Cruz S, et al. Large-scale generation of human allospecific induced Tregs with functional stability for use in immunotherapy in transplantation[J]. Front Immunol, 2020, 11: 375.
16
Tran LM, Thomson AW. Detection and monitoring of regulatory immune cells following their adoptive transfer in organ transplantation[J]. Front Immunol, 2020, 11: 614578.
17
Golshayan D, Jiang S, Tsang J, et al. In vitro-expanded donor alloantigen-specific CD4+CD25+ regulatory T cells promote experimental transplantation tolerance[J]. Blood, 2007, 109(2): 827-835.
18
Ferreira LMR, Muller YD, Bluestone JA, et al. Next-generation regulatory T cell therapy[J]. Nat Rev Drug Discov, 2019, 18(10): 749-769.
19
Del Papa B, Ruggeri L, Urbani E, et al. Clinical-grade-expanded regulatory T cells prevent graft-versus-host disease while allowing a powerful T cell-dependent graft-versus-leukemia effect in murine models[J]. Biol Blood Marrow Transplant, 2017, 23(11): 1847-1851.
20
Veerapathran A, Pidala J, Beato F, et al. Ex vivo expansion of human Tregs specific for alloantigens presented directly or indirectly[J]. Blood, 2011, 118(20): 5671-5680.
21
Lee K, Nguyen V, Lee KM, et al. Attenuation of donor-reactive T cells allows effective control of allograft rejection using regulatory T cell therapy[J]. Am J Transplant, 2014, 14(1): 27-38.
22
Noyan F, Zimmermann K, Hardtke-Wolenski M, et al. Prevention of allograft rejection by use of regulatory T cells with an MHC-specific chimeric antigen receptor[J]. Am J Transplant, 2017, 17(4): 917-930.
23
MacDonald KG, Hoeppli RE, Huang Q, et al. Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor[J]. J Clin Invest, 2016, 126(4): 1413-1424.
24
Boardman DA, Philippeos C, Fruhwirth GO, et al. Expression of a chimeric antigen receptor specific for donor HLA class I enhances the potency of human regulatory T cells in preventing human skin transplant rejection[J]. Am J Transplant, 2017, 17(4): 931-943.
25
Ward NC, Yu A, Moro A, et al. IL-2/CD25: A long-acting fusion protein that promotes immune tolerance by selectively targeting the IL-2 receptor on regulatory T cells [J]. J Immunol, 2018, 201(9): 2579-2592.
26
Matsuoka K, Koreth J, Kim HT, et al. Low-dose interleukin-2 therapy restores regulatory T cell homeostasis in patients with chronic graft-versus-host disease[J]. Sci Transl Med, 2013, 5(179): 179ra43.
27
Whitehouse G, Gray E, Mastoridis S, et al. IL-2 therapy restores regulatory T-cell dysfunction induced by calcineurin inhibitors[J]. Proc Natl Acad Sci U S A, 2017, 114(27): 7083-7088.
28
Thomson AW, Humar A, Lakkis FG, et al. Regulatory dendritic cells for promotion of liver transplant operational tolerance: Rationale for a clinical trial and accompanying mechanistic studies[J]. Hum Immunol, 2018, 79(5): 314-321.
29
Rickert CG, Markmann JF. Current state of organ transplant tolerance[J]. Curr Opin Organ Transplant, 2019, 24(4): 441-450.
30
Komatsu N, Okamoto K, Sawa S, et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis[J]. Nat Med, 2014, 20(1): 62-68.
31
Tripathi D, Cheekatla SS, Paidipally P, et al. C-Jun N-terminal kinase 1 defective CD4+CD25+FoxP3+ cells prolong islet allograft survival in diabetic mice[J]. Sci Rep, 2018, 8(1): 3310.
32
Chen Z, Barbi J, Bu S, et al. The ubiquitin ligase Stub1 negatively modulates regulatory T cell suppressive activity by promoting degradation of the transcription factor Foxp3[J]. Immunity, 2013, 39(2): 272-285.
33
Todo S, Yamashita K, Goto R, et al. A pilot study of operational tolerance with a regulatory T-cell-based cell therapy in living donor liver transplantation[J]. Hepatology, 2016, 64(2): 632-643.
34
Du X, Chang S, Guo W, et al. Progress in liver transplant tolerance and tolerance inducing cellular therapies [J]. Front Immunol, 2020, 11: 1326.
35
Mathew JM, H-Voss J, LeFever A, et al. A phase Ⅰ clinical trial with ex vivo expanded recipient regulatory T cells in living donor kidney transplants[J]. Sci Rep, 2018, 8(1): 7428.
36
Chandran S, Tang Q, Sarwal M, et al. Polyclonal regulatory T cell therapy for control of inflammation in kidney transplants[J]. Am J Transplant, 2017, 17(11): 2945-2954.
37
Marek-Trzonkowska N, Myśliwiec M, Dobyszuk A, et al. Therapy of type 1 diabetes with CD4(+)CD25(high)CD127-regulatory T cells prolongs survival of pancreatic islets - results of one year follow-up[J]. Clin Immunol, 2014, 153(1): 23-30.
38
Di Ianni M, Falzetti F, Carotti A, et al. Immunoselection and clinical use of T regulatory cells in HLA-haploidentical stem cell transplantation[J]. Best Pract Res Clin Haematol, 2011, 24(3): 459-466.
39
Martelli MF, Di Ianni M, Ruggeri L, et al. HLA-haploidentical transplantation with regulatory and conventional T-cell adoptive immunotherapy prevents acute leukemia relapse[J]. Blood, 2014, 124(4): 638-644.
40
Desreumaux P, Foussat A, Allez M, et al. Safety and efficacy of antigen-specific regulatory T-cell therapy for patients with refractory Crohn′s disease[J]. Gastroenterology, 2012, 143(5): 1207-1217.
[1] . 肝移植治疗终末期肝病[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 1-.
[2] 李坤河, 寇萌佳, 邝立挺. 肝移植术后二次气管插管的危险因素及预测模型的建立[J]. 中华普通外科学文献(电子版), 2023, 17(05): 366-371.
[3] 崔键, 戴庆. 基于肝囊型包虫病所致过敏反应模型研究Treg细胞数量比例与过敏反应的关系[J]. 中华普外科手术学杂志(电子版), 2023, 17(04): 427-430.
[4] 中华医学会器官移植学分会, 中国医师协会器官移植医师分会, 上海医药行业协会. 中国肝、肾移植受者霉酚酸类药物应用专家共识(2023版)[J]. 中华移植杂志(电子版), 2023, 17(05): 257-272.
[5] 陆闻青, 陈昕怡, 任雪飞. 遗传代谢病儿童肝移植受者术后生活质量调查研究[J]. 中华移植杂志(电子版), 2023, 17(05): 287-292.
[6] 范铁艳, 李君, 陈虹. 肝移植术后新发戊型病毒性肝炎的诊治经验[J]. 中华移植杂志(电子版), 2023, 17(05): 293-296.
[7] 陈朔, 陈峰, 程飞, 项捷. 糖原累积病Ⅰ型并发胰腺炎肝移植术后胰腺梗死一例[J]. 中华移植杂志(电子版), 2023, 17(05): 300-302.
[8] 汤鹏昊, 张武. 肠道微生态与肝移植围手术期并发症相关研究进展[J]. 中华移植杂志(电子版), 2023, 17(05): 303-307.
[9] 中国器官移植发展基金会器官移植受者健康管理专家委员会, 中国医师协会器官移植医师分会, 中华医学会器官移植学分会, 国家肝脏移植质控中心. 肝移植受者雷帕霉素靶蛋白抑制剂临床应用中国专家共识(2023版)[J]. 中华移植杂志(电子版), 2023, 17(04): 193-204.
[10] 严庆, 刘颖, 邓斐文, 陈焕伟. 微血管侵犯对肝癌肝移植患者生存预后的影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 624-629.
[11] 廖梅, 张红君, 金洁玚, 吕艳, 任杰. 床旁超声造影对肝移植术后早期肝动脉血栓的诊断价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 630-634.
[12] 李秉林, 吕少诚, 潘飞, 姜涛, 樊华, 寇建涛, 贺强, 郎韧. 供肝灌注液病原菌与肝移植术后早期感染的相关性分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 656-660.
[13] 吕垒, 冯啸, 何凯明, 曾凯宁, 杨卿, 吕海金, 易慧敏, 易述红, 杨扬, 傅斌生. 改良金氏评分在儿童肝豆状核变性急性肝衰竭肝移植手术时机评估中价值并文献复习[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 661-668.
[14] 王孟龙. 肿瘤生物学特征在肝癌肝移植治疗中的意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 490-494.
[15] 王晓东, 汪恺, 葛昭, 丁忠祥, 徐骁. 计算机视觉技术在肝癌肝移植疗效提升中的研究进展[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 361-366.
阅读次数
全文


摘要