切换至 "中华医学电子期刊资源库"

中华移植杂志(电子版) ›› 2022, Vol. 16 ›› Issue (05): 257 -265. doi: 10.3877/cma.j.issn.1674-3903.2022.05.001

专家共识

供体来源游离DNA检测在肾移植中临床应用的专家共识(2022版)
中国肾移植供体来源游离DNA应用与研究专家组, 中国医药生物技术协会移植技术分会   
  1. 1. 310003 杭州,浙江大学医学院附属第一医院肾脏病中心 浙江省肾脏病防治技术研究重点实验室 浙江大学肾脏病研究所
  • 收稿日期:2022-10-10 出版日期:2022-10-25
  • 基金资助:
    浙江省科技厅重点研发项目(2019C03029); 白求恩公益基金会共享阳光重大疾病临床科研合作项目(G-X-2019-0101-12)

Expert consensus on the clinical application of monitoring donor derived cell-free DNA in kidney transplantation (2022 edition)

China Kidney Transplantation-application and research of donor derived cell-free DNA study group, Society of Transplant Technology, China Medicinal Biotechnology Association   

  • Received:2022-10-10 Published:2022-10-25

游离DNA(cfDNA)反映其来源细胞的病理生理状态,已经广泛应用于肿瘤和产前基因检测。在器官移植领域,供体来源游离DNA(ddcfDNA)作为一种无创"液体活检"标志物在肾移植中越来越被重视,其在各种疾病状态中的价值和意义逐渐被阐释。中国肾移植供体来源游离DNA应用与研究专家组和中国医药生物技术协会移植技术分会组织相关专家参考国内外最新进展,结合我国肾移植临床实际撰写了初稿,广泛征求国内本领域临床一线专家修改意见后统稿完成本共识。共识围绕cfDNA检测与ddcfDNA计算、标本留取规范、ddcfDNA绝对值和相对值的意义、ddcfDNA与移植肾排斥反应(包括与移植肾损伤/排斥反应、供体特异性抗体、亚临床排斥反应、移植肾活检病理的关系、在诊断小管间质性TCMR的作用)、动态ddcfDNA的监测意义、ddcfDNA与儿童肾移植、重复肾移植、肾小球滤过率、移植肾BK多瘤病毒感染及ddcfDNA检测的影响因素等十个方面进行了论述,并给出了相关专家推荐意见。

1
Lui YY, Chik KW, Chiu RW, et al. Predominant hematopoietic origin of cell-free DNA in plasma and serum after sex-mismatched bone marrow transplantation[J]. Clin Chem, 2002, 48(3): 421-427.
2
Elshimali YI, Khaddour H, Sarkissyan M, et al. The clinical utilization of circulating cell free DNA (CCFDNA) in blood of cancer patients[J]. Int J Mol Sci, 2013, 14(9): 18925-18958.
3
Lam WKJ, Gai W, Sun K, et al. DNA of erythroid origin is present in human plasma and informs the types of anemia[J]. Clin Chem, 2017, 63(10): 1614-1623.
4
Swarup V, Rajeswari MR. Circulating (cell-free) nucleic acids-a promising, non-invasive tool for early detection of several human diseases[J]. FEBS Lett, 2007, 581(5): 795-799.
5
Anker P, Stroun M, Maurice PA. Spontaneous release of DNA by human blood lymphocytes as shown in an in vitro system[J]. Cancer Res, 1975, 35(9): 2375-2382.
6
Stroun M, Anker P. Nucleic acids spontaneously released by living frog auricles[J]. Biochem J, 1972, 128(3): 100p-101p.
7
Snyder MW, Kircher M, Hill AJ, et al. Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin[J]. Cell, 2016, 164(1-2): 57-68.
8
Kustanovich A, Schwartz R, Peretz T, et al. Life and death of circulating cell-free DNA[J]. Cancer Biol Ther, 2019, 20(8): 1057-1067.
9
Stroun M, Maurice P, Vasioukhin V, et al. The origin and mechanism of circulating DNA[J]. Ann N Y Acad Sci, 2000, 906(1): 161-168.
10
Jahr S, Hentze H, Englisch S, et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells[J]. Cancer Res, 2001, 61(4): 1659-1665.
11
Fleischhacker M, Schmidt B. Circulating nucleic acids (CNAs) and cancer-a survey[J]. Biochim Biophys Acta, 2007, 1775(1): 181-232.
12
Cicchillitti L, Corrado G, De Angeli M, et al. Circulating cell-free DNA content as blood based biomarker in endometrial cancer[J]. Oncotarget, 2017, 8(70): 115230-115243.
13
Beiter T, Fragasso A, Hudemann J, et al. Short-term treadmill running as a model for studying cell-free DNA kinetics in vivo[J]. Clin Chem, 2011, 57(4): 633-636.
14
García Moreira V, de la Cera Martínez T, Gago González E, et al. Increase in and clearance of cell-free plasma DNA in hemodialysis quantified by real-time PCR[J]. Clin Chem Lab Med, 2006, 44(12): 1410-1415.
15
Celec P, Vlková B, Lauková L, et al. Cell-free DNA: the role in pathophysiology and as a biomarker in kidney diseases[J]. Expert Rev Mol Med, 2018, 20: e1.
16
Gauthier VJ, Tyler LN, Mannik M. Blood clearance kinetics and liver uptake of mononucleosomes in mice[J]. J Immunol, 1996, 156(3): 1151-1156.
17
Du Clos TW, Volzer MA, Hahn FF, et al. Chromatin clearance in C57Bl/10 mice: interaction with heparan sulphate proteoglycans and receptors on kupffer cells[J]. Clin Exp Immunol, 1999, 117(2): 403-411.
18
Oellerich M, Sherwood K, Keown P, et al. Liquid biopsies: donor-derived cell-free DNA for the detection of kidney allograft injury[J]. Nat Rev Nephrol, 2021, 17(9): 591-603.
19
Leon SA, Shapiro B, Sklaroff DM, et al. Free DNA in the serum of cancer patients and the effect of therapy[J]. Cancer Res, 1977, 37(3): 646-650.
20
Heitzer E, Ulz P, Geigl JB. Circulating tumor DNA as a liquid biopsy for cancer[J]. Clinical Chemistry, 2015, 61(1): 112-123.
21
Ulrich BC, Paweletz CP. Cell-free DNA in oncology: gearing up for clinic[J]. Ann Lab Med, 2018, 38(1): 1-8.
22
Lo YM, Corbetta N, Chamberlain PF, et al. Presence of fetal DNA in maternal plasma and serum[J]. Lancet, 1997, 350(9076): 485-487.
23
Lo YM, Tein MS, Pang CC, et al. Presence of donor-specific DNA in plasma of kidney and liver-transplant recipients[J]. Lancet, 1998, 351(9112): 1329-1330.
24
Snyder TM, Khush KK, Valantine HA, et al. Universal noninvasive detection of solid organ transplant rejection[J]. Proc Natl Acad Sci U S A, 2011, 108(15): 6229-6234.
25
Gielis EM, Ledeganck KJ, De Winter BY, et al. Cell-free DNA: an upcoming biomarker in transplantation[J]. Am J Transplant, 2015, 15(10): 2541-2551.
26
Beck J, Oellerich M, Schütz E. A universal droplet digital PCR approach for monitoring of graft health after transplantation using a preselected SNP set[J]. Methods Mol Biol, 2018, 1768: 335-348.
27
Dauber EM, Kollmann D, Kozakowski N, et al. Quantitative PCR of INDELs to measure donor-derived cell-free DNA-a potential method to detect acute rejection in kidney transplantation: a pilot study[J]. Transpl Int, 2020, 33(3): 298-309.
28
Grskovic M, Hiller DJ, Eubank LA, et al. Validation of a clinical-grade assay to measure donor-derived cell-free DNA in solid organ transplant recipients[J]. J Mol Diagn, 2016, 18(6): 890-902.
29
Altuğ Y, Liang N, Ram R, et al. Analytical validation of a single-nucleotide polymorphism-based donor-derived cell-free DNA assay for detecting rejection in kidney transplant patients[J]. Transplantation, 2019, 103(12): 2657-2665.
30
Zhou Y, Yang G, Liu H, et al. A Noninvasive and donor-independent method simultaneously monitors rejection and infection in patients with organ transplant[J]. Transplant Proc, 2019, 51(6): 1699-1705.
31
De Vlaminck I, Valantine HA, Snyder TM, et al. Circulating cell-free DNA enables noninvasive diagnosis of heart transplant rejection[J]. Sci Transl Med, 2014, 6(241): 241ra77.
32
Bloom RD, Bromberg JS, Poggio ED, et al. Cell-free DNA and active rejection in kidney allografts[J]. J Am Soc Nephrol, 2017, 28(7): 2221-2232.
33
Halloran PF, Reeve J, Madill-Thomsen KS, et al. The Trifecta study: comparing plasma levels of donor-derived cell-free DNA with the molecular phenotype of kidney transplant biopsies[J]. J Am Soc Nephrol, 2022, 33(2): 387-400.
34
Levitsky J, Kandpal M, Guo K, et al. Donor-derived cell-free DNA levels predict graft injury in liver transplant recipients[J]. Am J Transplant, 2022, 22(2): 532-540.
35
Levitsky J, Kandpal M, Guo K, et al. Donor-derived cell-free DNA kinetics post-kidney transplant biopsy[J]. Transplant Direct, 2021, 7(6): e703.
36
Shen J, Guo L, Yan P, et al. Prognostic value of the donor-derived cell-free DNA assay in acute renal rejection therapy: a prospective cohort study[J]. Clinical Transplantation, 2020, 34(10): e14053.
37
Lee TH, Montalvo L, Chrebtow V, et al. Quantitation of genomic DNA in plasma and serum samples: higher concentrations of genomic DNA found in serum than in plasma[J]. Transfusion, 2001, 41(2): 276-282.
38
Jung M, Klotzek S, Lewandowski M, et al. Changes in concentration of DNA in serum and plasma during storage of blood samples[J]. Clin Chem, 2003, 49(6 Pt 1): 1028-1029.
39
Parpart-Li S, Bartlett B, Popoli M, et al. The Effect of preservative and temperature on the analysis of circulating tumor DNA[J]. Clin Cancer Res, 2017, 23(10): 2471-2477.
40
Zhou Q, Liu F, Guo L, et al. A novel urine cell-free DNA preservation solution and its application in kidney transplantation[J]. Nephrology (Carlton), 2021, 26(8): 684-691.
41
Bu L, Gupta G, Pai A, et al. Clinical outcomes from the assessing donor-derived cell-free DNA monitoring insights of kidney allografts with longitudinal surveillance (ADMIRAL) study[J]. Kidney Int, 2022, 101(4): 793-803.
42
Sun K, Jiang P, Chan KC, et al. Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments[J]. Proc Natl Acad Sci U S A, 2015, 112(40): E5503-E5512.
43
Oellerich M, Shipkova M, Asendorf T, et al. Absolute quantification of donor-derived cell-free DNA as a marker of rejection and graft injury in kidney transplantation: results from a prospective observational study[J]. Am J Transplant, 2019, 19(11): 3087-3099.
44
Whitlam JB, Ling L, Skene A, et al. Diagnostic application of kidney allograft-derived absolute cell-free DNA levels during transplant dysfunction[J]. Am J Transplant, 2019, 19(4): 1037-1049.
45
Shen J, Zhou Y, Chen Y, et al. Dynamics of early post-operative plasma ddcfDNA levels in kidney transplantation: a single-center pilot study[J]. Transpl Int, 2019, 32(2): 184-192.
46
Zhang J, Tong KL, Li PK, et al. Presence of donor- and recipient-derived DNA in cell-free urine samples of renal transplantation recipients: urinary DNA chimerism[J]. Clin Chem, 1999, 45(10): 1741-1746.
47
Huang E, Sethi S, Peng A, et al. Early clinical experience using donor-derived cell-free DNA to detect rejection in kidney transplant recipients[J]. Am J Transplant, 2019, 19(6): 1663-1670.
48
Zhong XY, Hahn D, Troeger C, et al. Cell-free DNA in urine: a marker for kidney graft rejection, but not for prenatal diagnosis?[J]. Ann N Y Acad Sci, 2001, 945: 250-257.
49
Sigdel TK, Vitalone MJ, Tran TQ, et al. A rapid noninvasive assay for the detection of renal transplant injury[J]. Transplantation, 2013, 96(1): 97-101.
50
Gielis EM, Ledeganck KJ, Dendooven A, et al. The use of plasma donor-derived, cell-free DNA to monitor acute rejection after kidney transplantation[J]. Nephrol Dial Transplant, 2019, 35(4): 714-721.
51
Parajuli S, Reville PK, Ellis TM, et al. Utility of protocol kidney biopsies for de novo donor-specific antibodies[J]. Am J Transplant, 2017, 17(12): 3210-3218.
52
Schinstock CA, Cosio F, Cheungpasitporn W, et al. The value of protocol biopsies to identify patients with de novo donor-specific antibody at high risk for allograft loss[J]. Am J Transplant, 2017, 17(6): 1574-1584.
53
Cheng D, Liu F, Xie K, et al. Donor-derived cell-free DNA: an independent biomarker in kidney transplant patients with antibody-mediated rejection[J]. Transpl Immunol, 2021, 69: 101404.
54
Stites E, Kumar D, Olaitan O, et al. High levels of dd-cfDNA identify patients with TCMR 1A and borderline allograft rejection at elevated risk of graft injury[J]. Am J Transplant, 2020, 20(9): 2491-2498.
55
Zhang H, Zheng C, Li X, et al. Diagnostic performance of donor-derived plasma cell-free DNA fraction for antibody-mediated rejection in post renal transplant recipients: a prospective observational study[J]. Front Immunol, 2020, 11: 342.
56
Jordan SC, Bunnapradist S, Bromberg JS, et al. Donor-derived cell-free DNA identifies antibody-mediated rejection in donor specific antibody positive kidney transplant recipients[J]. Transplant Direct, 2018, 4(9): e379.
57
Obrişcă B, Butiu M, Sibulesky L, et al. Combining donor-derived cell-free DNA and donor specific antibody testing as non-invasive biomarkers for rejection in kidney transplantation[J]. Sci Rep, 2022, 12(1): 15061.
58
Mayer KA, Doberer K, Tillgren A, et al. Diagnostic value of donor-derived cell-free DNA to predict antibody-mediated rejection in donor-specific antibody-positive renal allograft recipients[J]. Transpl Int, 2021, 34(9): 1689-1702.
59
Loupy A, Vernerey D, Tinel C, et al. Subclinical rejection phenotypes at 1 year post-transplant and outcome of kidney allografts[J]. J Am Soc Nephrol, 2015, 26(7): 1721-1731.
60
Wijtvliet VPWM, Plaeke P, Abrams S, et al. Donor-derived cell-free DNA as a biomarker for rejection after kidney transplantation: a systematic review and meta-analysis[J]. Transpl Int, 2020, 33(12): 1626-1642.
61
Shen J, Guo L, Lei W, et al. Urinary donor-derived cell-free DNA as a non-invasive biomarker for BK polyomavirus-associated nephropathy[J]. J Zhejiang Univ Sci B, 2021, 22(11): 917-928.
62
Cheng D, Feng L, Liu H, et al. Simultaneously detection of ddcfdna in plasma and urine assist to determine the type of rejection in renal transplant patients[J]. Transplantation, 104(S3):S40-S40.
63
Guo L, Shen J, Lei W, et al. Plasma donor-derived cell-free DNA levels are associated with the inflammatory burden and macrophage extracellular trap activity in renal allografts[J]. Front Immunol, 2022, 13: 796326.
64
Halloran PF, Reeve J, Madill-Thomsen KS, et al. Combining donor-derived cell-free DNA fraction and quantity to detect kidney transplant rejection using molecular diagnoses and histology as confirmation[J]. Transplantation, 2022.
65
Halloran PF, Reeve J, Madill-Thomsen KS, et al. Antibody-mediated rejection without detectable donor-specific antibody releases donor-derived cell-free DNA: results from the Trifecta study[J]. Transplantation, 2022.
66
Huang E, Gillespie M, Ammerman N, et al. Donor-derived cell-free DNA combined with histology improves prediction of estimated glomerular filtration rate over time in kidney transplant recipients compared with histology alone[J]. Transplantation Direct, 2020, 6(8): e580.
67
Gielis EM, Beirnaert C, Dendooven A, et al. Plasma donor-derived cell-free DNA kinetics after kidney transplantation using a single tube multiplex PCR assay[J]. PLoS One, 2018, 13(12): e0208207.
68
Hinojosa RJ, Chaffin K, Gillespie M, et al. Donor-derived cell-free DNA may confirm real-time response to treatment of acute rejection in renal transplant recipients[J]. Transplantation, 2019, 103(4): e61.
69
Pai A, Swan JT, Wojciechowski D, et al. Clinical rationale for a routine testing schedule using donor-derived cell-free DNA after kidney transplantation[J]. Ann Transplant, 2021, 26: e932249.
70
Wolf-Doty TK, Mannon RB, Poggio ED, et al. Dynamic response of donor-derived cell-free DNA following treatment of acute rejection in kidney allografts[J]. Kidney360, 2021, 2(4): 729-736.
71
Puliyanda DP, Swinford R, Pizzo H, et al. Donor-derived cell-free DNA (dd-cfDNA) for detection of allograft rejection in pediatric kidney transplants[J]. Pediatr Transplant, 2021, 25(2): e13850.
72
Nie W, Su X, Liu L, et al. Dynamics of donor-derived cell-free DNA at the early phase after pediatric kidney transplantation: a prospective cohort study[J]. Front Med (Lausanne), 2022, 8: 814517.
73
Steggerda JA, Pizzo H, Garrison J, et al. Use of a donor-derived cell-free DNA assay to monitor treatment response in pediatric renal transplant recipients with allograft rejection[J]. P Pediatr Transplant, 2022, 26(4): e14258.
74
Mehta SG, Chang JH, Alhamad T, et al. Repeat kidney transplant recipients with active rejection have elevated donor-derived cell-free DNA[J]. Am J Transplant, 2019, 19(5): 1597-1598.
75
Sureshkumar KK, Lyons S, Chopra B. Impact of kidney transplant type and previous transplant on baseline donor-derived cell free DNA[J]. Transpl Int, 2020, 33(10): 1324-1325.
76
Chen XT, Chen WF, Li J, et al. Urine donor-derived cell-free DNA helps discriminate BK polyomavirus-associated nephropathy in kidney transplant recipients with BK polyomavirus infection[J]. Front Immunol, 2020, 11: 1763.
77
Kant S, Bromberg J, Haas M, et al. Donor-derived cell-free DNA and the prediction of BK virus-associated nephropathy[J]. Transplant Direct, 2020, 6(11): e622.
78
Chen XT, Qiu J, Wu ZX, et al. Using both plasma and urine donor-derived cell-free DNA to identify various renal allograft injuries[J]. Clin Chem, 2022, 68(6): 814-825.
79
Urosevic N, Merritt AJ, Inglis TJJ. Plasma cfDNA predictors of established bacteraemic infection[J]. Access Microbiol, 2022, 4(6): acmi000373.
80
Waldvogel Abramowski S, Tirefort D, Lau P, et al. Cell-free nucleic acids are present in blood products and regulate genes of innate immune response[J]. Transfusion, 2018, 58(7): 1671-1681.
81
Tug S, Helmig S, Deichmann ER, et al. Exercise-induced increases in cell free DNA in human plasma originate predominantly from cells of the haematopoietic lineage[J]. Exerc Immunol Rev, 2015, 21: 164-173.
82
Mondelo-Macía P, Castro-Santos P, Castillo-García A, et al. Circulating free DNA and its emerging role in autoimmune diseases[J]. J Pers Med, 2021, 11(2): 151.
83
Truszewska A, Foroncewicz B, Pczek L. The role and diagnostic value of cell-free DNA in systemic lupus erythematosus[J]. Clin Exp Rheumatol, 2017, 35(2): 330-336.
84
Sureshkumar KK, Aramada HR, Chopra B. Impact of body mass index and recipient age on baseline donor-derived cell free DNA (dd-cfDNA) in kidney transplant recipients[J]. Clin Transplant, 2020, 34(12): e14101.
85
Bianchi DW. Cherchez la femme: maternal incidental findings can explain discordant prenatal cell-free DNA sequencing results[J]. Genet Med, 2018, 20(9): 910-917.
86
Yan L, Chen Y, Zhou J, et al. Diagnostic value of circulating cell-free DNA levels for hepatocellular carcinoma[J]. Int J Infect Dis, 2018, 67: 92-97.
87
Anand S, Lopez-Verdugo F, Sanchez-Garcia J, et al. Longitudinal variance of donor-derived cell-free DNA (dd-cfDNA) in stable kidney transplant (KTx) patients are influenced by donor/recipient variables[J]. Clin Transplant, 2021, 35(9): e14395.
[1] 张莉莉, 张焱, 金爱云. 肾移植受者术后妊娠56例母婴结局的现况调查[J]. 中华危重症医学杂志(电子版), 2022, 15(05): 389-393.
[2] 呼吸道传染病标本采集及检测专家委员会. 呼吸道传染病标本采集及检测专家共识[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(04): 217-228.
[3] 董博清, 豆猛, 张静, 冯新顺, 郑瑾, 李潇, 丁小明, 薛武军, 李杨. 肾移植术后BK病毒相关性肾病核心基因及免疫微环境的生物信息学分析[J]. 中华移植杂志(电子版), 2022, 16(04): 201-209.
[4] Mounia Lalouly, 王祥慧, 周佩军, 邵琨, 安会敏, 周全. 肾移植受者T细胞亚群绝对计数动态监测对感染的预警作用[J]. 中华移植杂志(电子版), 2022, 16(04): 210-215.
[5] 杨素霞, 朱晓隆, 朱有华, 陈宇童, 李雨虹, 隋明星, 李烟花. 不同补液方案对活体肾移植受者术后多尿期临床疗效和护理工作量的影响分析[J]. 中华移植杂志(电子版), 2022, 16(03): 160-164.
[6] 中国医师协会器官移植医师分会, 中华医学会器官移植学分会. 中国实体器官移植手术部位感染管理专家共识(2022版)[J]. 中华移植杂志(电子版), 2022, 16(03): 129-139.
[7] 刘一霆, 邱涛, 陈忠宝, 马枭雄, 王天宇, 张龙, 邹寄林, 金泽亚, 徐雨, 周江桥. 急性肾损伤供肾对肾移植受者预后影响分析[J]. 中华移植杂志(电子版), 2022, 16(03): 140-146.
[8] 广东省医疗行业协会泌尿外科管理分会. 老年尿失禁护理专家共识[J]. 中华腔镜泌尿外科杂志(电子版), 2022, 16(05): 389-393.
[9] 钟文, 曾国华. 2021年经皮肾镜欧洲泌尿外科学会尿石症分会与国际尿石症联盟联合专家共识解读[J]. 中华腔镜泌尿外科杂志(电子版), 2022, 16(03): 193-197.
[10] 中国呼吸医师协会介入委员会胸膜疾病专业组. 内科胸腔镜下光动力治疗胸膜肿瘤的专家共识[J]. 中华肺部疾病杂志(电子版), 2022, 15(05): 615-620.
[11] 中国医师协会结直肠肿瘤专业委员会腹膜肿瘤专委会. 结直肠癌腹膜转移诊治中国专家共识(2022版)[J]. 中华结直肠疾病电子杂志, 2022, 11(04): 265-271.
[12] 中国医师协会结直肠肿瘤专业委员会NOSES专委会, 中国医师协会结直肠肿瘤专业委员会机器人手术专委会. “机器人”结直肠肿瘤经自然腔道取标本手术专家共识[J]. 中华结直肠疾病电子杂志, 2022, 11(03): 177-191.
[13] 刘玲, 李绪言, 徐永昊, 赵慧颖, 罗巧侠, 欧晓峰, 宋雷, 程渊, 周娟, 曾以萍, 刘爱华, 边巴穷达, 张烁, 吕杰, 王玺, 鲁燕云, 陈佰绪, 达珍, 俞云, 邵佳, 中华医学会重症医学分会重症呼吸学组, 西藏医学会高原医学暨心血管专业委员会, 中国医师协会重症医学医师分会. 高原地区新型冠状病毒肺炎重症患者(重型/危重型)诊疗专家共识[J]. 中华重症医学电子杂志, 2022, 08(04): 340-346.
[14] 中国血管瘤血管畸形联盟, 中国医师协会介入医师分会妇儿介入学组. 聚桂醇注射液治疗儿童静脉畸形中国专家共识[J]. 中华介入放射学电子杂志, 2022, 10(04): 349-354.
[15] 马丽, 赵晶, 祁晓磊, 肖越勇, 何丽, 中国医药教育协会介入微创治疗专业委员会, 中国抗癌协会肿瘤微创治疗专业委员会. CT引导下不可逆电穿孔围手术期护理管理专家共识[J]. 中华介入放射学电子杂志, 2022, 10(04): 355-359.
阅读次数
全文


摘要