切换至 "中华医学电子期刊资源库"

中华移植杂志(电子版) ›› 2022, Vol. 16 ›› Issue (05) : 309 -313. doi: 10.3877/cma.j.issn.1674-3903.2022.05.009

综述

纳米技术在气管移植物中的应用
孙艺琪1, 史宏灿1,()   
  1. 1. 225003 扬州大学医学院转化医学研究院
  • 收稿日期:2022-08-06 出版日期:2022-10-25
  • 通信作者: 史宏灿
  • 基金资助:
    国家自然科学基金(82070020)

Application of nanotechnology in tracheal grafts

Yiqi Sun1, Hongcan Shi1,()   

  1. 1. Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225003, China
  • Received:2022-08-06 Published:2022-10-25
  • Corresponding author: Hongcan Shi
引用本文:

孙艺琪, 史宏灿. 纳米技术在气管移植物中的应用[J]. 中华移植杂志(电子版), 2022, 16(05): 309-313.

Yiqi Sun, Hongcan Shi. Application of nanotechnology in tracheal grafts[J]. Chinese Journal of Transplantation(Electronic Edition), 2022, 16(05): 309-313.

纳米技术是在气管移植物组织工程中新兴的研究方向。纳米技术不仅涉及其所需要用到的纳米生物材料,同时也包括纳米纤维结构的生成技术。纳米生物材料主要分为单一和复合两类,但在具体操作中,复合纳米生物材料具有更广阔的应用前景。纳米纤维结构生成技术主要有三大类:静电纺丝、自组装和相分离,静电纺丝技术相较于后两种技术更方便、经济和高效。本文旨在综述部分较为重要的纳米生物材料和纳米纤维结构生成技术在气管移植物中的应用,以及纳米技术在气管移植物中应用的展望。

Nanotechnology is a new research direction in tissue engineering of tracheal grafts. Nanotechnology involves not only the nano biomaterials, but also the generation technology of nanofiber structure. Nano biomaterials are mainly divided into inorganic and organic, but in the specific operation, organic nano biomaterials have a broader prospect. There are three main types of nanofiber structure generation technologies: electrospinning, self-assembly and phase separation. Compared with the latter two technologies, electrospinning technology is more convenient and cost-effective. The purpose of this article is to review some important nano biomaterials, the application of nanofiber structure generation technology in tracheal grafts and the prospect of nanotechnology in tracheal grafts.

1
沈家骢. 纳米生物医用材料[J]. 中国医学科学院学报200628(4):472-474.
2
王嵩. 纳米生物材料人工气管的实验研究[D]. 江苏:扬州大学,2011.
3
Wright CD, Li S, Geller AD, et al. Postintubation tracheal stenosis: management and results 1993 to 2017[J]. Ann Thorac Surg. 2019.108(5):1471-1477.
4
James P, Parmar S, Hussain K, et al. Tracheal stenosis after tracheostomy[J]. Br J Oral Maxillofac Surg, 202159(1):82-85.
5
Cooper JD. Surgery of the airway: historic notes[J]. J Thorac Dis, 20168(Suppl 2):S113-S120.
6
Murgu SD, Egressy K, Laxmanan B, et al. Central airway obstruction: benign strictures, tracheobronchomalacia, and malignancy-related obstruction[J]. Chest, 2016150(2):426-441.
7
Huang W, Shan Q, Wu Z, et al. Retrievable covered metallic segmented Y airway stent for gastrorespiratory fistula of carina or main bronchi[J]. J Thorac Cardiovasc Surg, 2021161(5):1664-1671.e2.
8
Faul JL, Kee ST, Rizk NW. Endobronchial stenting for severe airway obstruction in relapsing polychondritis[J]. Chest, 1999116(3):825-827.
9
Herth FJ, Eberhardt R. Airway stent: what is new and what should be discarded[J]. Curr Opin Pulm Med, 201622(3): 252-256.
10
马刚,汪道峰,苏全冠,等. 气管支架置入术治疗肿瘤引起的急性气道狭窄[J]. 癌症杂志200827(8):851-855.
11
Brennan SA, Ní Fhoghlú C, Devitt BM, et al. Silver nanoparticles and their orthopaedic applications[J]. Bone Joint J, 201597-B(5):582-589.
12
Kumar SSD, Rajendran NK, Houreld NN, et al. Recent advances on silver nanoparticle and biopolymer-based biomaterials for wound healing applications[J]. Int J Biol Macromol, 2018115:165-175.
13
Li Z, Jiao D, Zhang W, et al. Antibacterial and antihyperplasia polylactic acid/silver nanoparticles nanofiber membrane-coated airway stent for tracheal stenosis[J]. Colloids Surf B Biointerfaces, 2021206:111949.
14
Cao H, Liu X. Silver nanoparticles-modified films versus biomedical device-associated infections[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 20102(6):670-684.
15
Wen W, Ma LM, He W, et al. Silver-nanoparticle-coated biliary stent inhibits bacterial adhesion in bacterial cholangitis in swine[J]. Hepatobiliary Pancreat Dis Int, 201615(1):87-92.
16
Zhang H, Chen F, Li Y, et al. The effects of autophagy in rat tracheal epithelial cells induced by silver nanoparticles[J]. Environ Sci Pollut Res Int, 202128(22):27565-27576.
17
Chua M, Chui CK. Probabilistic predictive modelling of carbon nanocomposites for medical implants design[J]. J Mech Behav Biomed Mater, 201544:164-172.
18
De Volder MF, Tawfick SH, Baughman RH, et al. Carbon nanotubes: present and future commercial applications[J]. Science, 2013339(6119):535-539.
19
Mackle JN, Blond DJ, Mooney E, et al. In vitro characterization of an electroactive carbon-nanotube-based nanofiber scaffold for tissue engineering[J]. Macromol Biosci, 201111(9):1272-1282.
20
Cheng Q, Rutledge K, Jabbarzadeh E. Carbon nanotube-poly(lactide-co-glycolide) composite scaffolds for bone tissue engineering applications[J]. Ann Biomed Eng, 201341(5):904-916.
21
Chua M, Chui CK, Teo C, et al. Patient-specific carbon nanocomposite tracheal prosthesis[J]. Int J Artif Organs, 201538(1):31-38.
22
Bianco A, Kostarelos K, Prato M. Making carbon nanotubes biocompatible and biodegradable[J]. Chem Commun (Camb), 201147(37):10182-10188.
23
Bendo Demétrio K, Giotti Cioato MJ, Moreschi A, et al. Polydimethylsiloxane/nano calcium phosphate composite tracheal stents: mechanical and physiological properties[J]. J Biomed Mater Res B Appl Biomater, 2019107(3):545-553.
24
Thein-Han WW, Shah J, Misra RD. Superior in vitro biological response and mechanical properties of an implantable nanostructured biomaterial: nanohydroxyatite-silicone rubber composite[J]. Acta Biomater, 20095(7):2668-2679.
25
Ohbayashi Y, Miyake M, Nagahata S. A long-term study of implanted artificial hydroxyapatite particles surrounding the carotid artery in adult dogs[J]. Biomaterials, 200021(5):501-509.
26
Dong Y, Liao S, Ngiam M, et al. Degradation behaviors of electrospun resorbable polyester nanofibers[J]. Tissue Eng Part B Rev, 200915(3):333-351.
27
Jundziłł A, Pokrywczyńska M, Adamowicz J, et al. Vascularization potential of electrospun poly(L-lactide-co-caprolactone) scaffold: the impact for tissue engineering[J]. Med Sci Monit, 201723:1540-1551.
28
Komiyama M, Yoshimoto K, Sisido K, et al. Chemistry can make strict and fuzzy controls for bio-systems: DNA nanoarchitectonics and cell-macromolecular nanoarchitectonics[J]. Bull Chem Soc Jpn, 201790:967-1004.
29
Ariga K, Nishikawa M, Mori T, et al. Self-assembly as a key player for materials nanoarchitectonics[J]. Sci Technol Adv Mater, 201920(1):51-95.
30
Zhang S, Xing M, Li B. Biomimetic layer-by-layer self-assembly of nanofilms, nanocoatings, and 3D scaffolds for tissue engineering[J]. Int J Mol Sci, 201819(6):1641.
31
Zhu Y, Gao C, He T, et al. Layer-by-layer assembly to modify poly(l-lactic acid) surface toward improving its cytocompatibility to human endothelial cells[J]. Biomacromolecules, 20034(2):446-452.
32
Liu X, Smith L, Wei G, et al. Surface engineering of nano-fibrous poly(l-lactic acid) scaffolds via self-assembly technique for bone tissue engineering[J]. J Biomed Nanotechnol, 20051:54-60.
33
Gong Y, Zhu Y, Liu Y, et al. Layer-by-layer assembly of chondroitin sulfate and collagen on aminolyzed poly(l-lactic acid) porous scaffolds to enhance their chondrogenesis[J]. Acta Biomater, 20073(5):677-685.
34
Liu X, Wei M, Wang Q, et al. Capillary-force-driven self-assembly of 4D-printed microstructures[J]. Adv Mater, 202133(22):e2100332.
35
Tan A, Madani SY, Rajadas J, et al. Synergistic photothermal ablative effects of functionalizing carbon nanotubes with a POSS-PCU nanocomposite polymer[J]. J Nanobiotechnology, 201210:34.
36
de Mel A, Punshon G, Ramesh B, et al. In situ endothelialisation potential of a biofunctionalised nanocomposite biomaterial-based small diameter bypass graft[J]. Biomed Mater Eng, 200919(4-5):317-331.
37
Maughan E, Lesage F, Butler CR, et al. Airway tissue engineering for congenital laryngotracheal disease[J]. Semin Pediatr Surg, 201625(3):186-190.
38
Maughan EF, Butler CR, Crowley C, et al. A comparison of tracheal scaffold strategies for pediatric transplantation in a rabbit model[J]. Laryngoscope, 2017127(12):E449-E457.
39
Schiraldi C, D′Agostino A, Oliva A, et al. Development of hybrid materials based on hydroxyethylmethacrylate as supports for improving cell adhesion and proliferation[J]. Biomaterials, 200425(17):3645-3653.
40
de Mel A, Ramesh B, Scurr DJ, et al. Fumed silica nanoparticle mediated biomimicry for optimal cell-material interactions for artificial organ development[J]. Macromol Biosci, 201414(3):307-313.
41
Mahoney C, Conklin D, Waterman J, et al. Electrospun nanofibers of poly(ε-caprolactone)/depolymerized chitosan for respiratory tissue engineering applications[J]. J Biomater Sci Polym Ed, 201627(7):611-625.
42
Guibert N, Saka H, Dutau H. Airway stenting: technological advancements and its role in interventional pulmonology[J]. Respirology, 202025(9):953-962.
43
Zhao Y, Tian C, Wu K, et al. Vancomycin-loaded polycaprolactone electrospinning nanofibers modulate the airway interfaces to restrain tracheal stenosis[J]. Front Bioeng Biotechnol, 20219:760395.
[1] 陈严城, 符培亮. 组织工程技术在骨软骨缺损中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 376-384.
[2] 钱嘉天, 符培亮. 3D打印脱细胞的细胞外基质修复软骨缺损的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 368-375.
[3] 陈曦, 刘畅, 李萍, 李雨航, 陈彦斌, 王昆. 肩峰下滑囊的解剖结构和功能与临床意义[J]. 中华关节外科杂志(电子版), 2022, 16(03): 337-342.
[4] 王雪, 程微, 苏建东. 微针法表皮移植应用的新进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 270-273.
[5] 蒯贤东, 郑国爽, 杨佳慧, 赵德伟. 用于关节软骨缺损修复的壳聚糖复合支架的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(06): 535-539.
[6] 刘梦柔, 刘沛东, 张城铭, 刘阳, 李鹏翠, 杨自权. 基于文献计量学与可视化分析的骨组织工程支架材料的全球研究现状及发展趋势[J]. 中华损伤与修复杂志(电子版), 2022, 17(05): 411-420.
[7] 寇佳慧, 张梦圆, 张宝林. 生物组织工程中细胞外基质成分促进创面愈合的研究进展[J]. 中华损伤与修复杂志(电子版), 2021, 16(05): 449-452.
[8] 王湘滔, 张爱娟, 王万春, 王芳萍, 徐颖婕, 孟洋. 中药白及在口腔疾病中的研究与应用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 371-375.
[9] 钟文文, 李科, 刘碧好, 蔡炳, 脱颖, 叶雷, 马波, 瞿虎, 汪中扬, 王德娟, 邱剑光. 不同比例聚乳酸/丝素蛋白复合支架在兔尿道缺损修复中的疗效[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 516-522.
[10] 冯欢, 杨凤霞, 许静, 黄婧琼, 刘晓青, 陈艳, 褚玲玲. 胸腹部创面愈合的研究现状及进展[J]. 中华肺部疾病杂志(电子版), 2021, 14(06): 840-842.
[11] 林诗雯, 孙慧, 陈娜娜, 朱聪. 共培养促神经化策略在组织工程骨构建中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(05): 293-299.
[12] 张郭, 慈海, 周牧冉, 孙家明, 郭亮. 仿生聚己内酯支架用于乳房组织工程的可行性研究[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(04): 215-223.
[13] 周莹芊, 汪振星, 张一帆, 孙家明, 曹谊林. 模块化与血管化组织工程技术[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(03): 161-166.
[14] 杜凯玥, 袁博伟, 洪晶. 水凝胶在角膜修复中的应用研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(05): 298-304.
[15] 许可, 杨海堂, 仲晨曦, 赵珩, 姚烽. 关于气管替代物研究的进展与展望[J]. 中华胸部外科电子杂志, 2021, 08(03): 164-173.
阅读次数
全文


摘要