切换至 "中华医学电子期刊资源库"

中华移植杂志(电子版) ›› 2022, Vol. 16 ›› Issue (05) : 314 -318. doi: 10.3877/cma.j.issn.1674-3903.2022.05.010

综述

库普弗细胞在肝移植中的作用研究进展
于长江1, 赵敏杰2, 龚建平2,()   
  1. 1. 402460 重庆市荣昌区妇幼保健院普通外科
    2. 400010 重庆医科大学附属第二医院肝胆外科
  • 收稿日期:2022-09-14 出版日期:2022-10-25
  • 通信作者: 龚建平

Research progress on the role of kupfer cell in liver transplantation

Changjiang Yu1, Minjie Zhao2, Jianping Gong2,()   

  1. 1. Department of General Surgery, Chongqing Rongchang Maternal and Child Health Hospital, Chongqing 402460, China
    2. Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
  • Received:2022-09-14 Published:2022-10-25
  • Corresponding author: Jianping Gong
引用本文:

于长江, 赵敏杰, 龚建平. 库普弗细胞在肝移植中的作用研究进展[J]. 中华移植杂志(电子版), 2022, 16(05): 314-318.

Changjiang Yu, Minjie Zhao, Jianping Gong. Research progress on the role of kupfer cell in liver transplantation[J]. Chinese Journal of Transplantation(Electronic Edition), 2022, 16(05): 314-318.

肝移植被公认为是目前治疗终末期肝病最有效的手段。除要求外科医师精湛的手术技巧外,术后缺血再灌注损伤(IRI)和排斥反应是影响受者预后及远期生存率、生存质量的重要因素。库普弗细胞(KC)是肝脏的常驻巨噬细胞,其在肝移植术后IRI、排斥反应及免疫耐受过程中发挥重要作用。本文对KC在肝移植后IRI、排斥反应及诱导免疫耐受方面作用的研究现状和进展进行综述。

Liver transplantation is recognized as the most effective treatment for end-stage liver diseases. In addition to excellent surgical skills, postoperative ischemia reperfusion injury (IRI) and rejection are important factors affecting the prognosis, long-term survival and life quality of patients. Kupfer cell (KC) is resident macrophages in the liver, which plays a crucial role in the process of IRI, rejection and immune tolerance after liver transplantation. This review summarizes the current status and progress of the research on the effects of KC on IRI, rejection and induction of immune tolerance after liver transplantation.

1
谢闰鹏,谷明旗,张凤博,等. 肝移植手术技术的现状和展望[J]. 器官移植2022, 13(1):105-110.
2
Zhai Y, Busuttil RW, Kupiec-Weglinski JW. Liver ischemia and reperfusion injury: new insights into mechanisms of innate-adaptive immune-mediated tissue inflammation[J]. Am J Transplant, 2011, 11(8):1563-1569.
3
Zhai Y, Petrowsky H, Hong JC, et al. Ischaemia-reperfusion injury in liver transplantation-from bench to bedside[J]. Nat Rev Gastroenterol Hepatol, 2013, 10(2):79-89.
4
Wang H, Xi ZF, Deng L, et al. Macrophage polarization and liver ischemia-reperfusion injury[J]. Int J Med Sci, 2021, 18(5): 1104-1113.
5
Tan L, Jiang W, Lu A, et al. miR-155 aggravates liver ischemia/reperfusion injury by suppressing SOCS1 in mice[J]. Transplant Proc, 2018, 50(10):3831-3839.
6
Ni M, Zhang J, Sosa R, et al. T-cell immunoglobulin and mucin domain-containing protein-4 is critical for kupffer cell homeostatic function in the activation and resolution of liver ischemia reperfusion injury[J]. Hepatology, 2021, 74(4):2118-2132.
7
Dai JW, Chen QS, Huang WF, et al. Liver kinase B1 attenuates liver ischemia/reperfusion injury via inhibiting the NLRP3 inflammasome[J]. Acta Biochim Biophys Sin (Shanghai), 2021, 53(5):601-611.
8
Wang ZY, Han S, Chen XJ, et al. Eva1a inhibits NLRP3 activation to reduce liver ischemia-reperfusion injury via inducing autophagy in kupffer cells[J]. Mol Immunol, 2021, 132:82-92.
9
Ye L, He S, Mao X, et al. Effect of hepatic macrophage polarization and apoptosis on liver ischemia and reperfusion injury during liver transplantation[J]. Front Immunol, 2020, 11:1193.
10
Goikoetxea UN, Serrano-MM, Delgado TC, et al. Mitochondrial bioenergetics boost macrophage activation, promoting liver regeneration in metabolically compromised animals[J]. Hepatology, 2022, 75(3):550-566.
11
Wang LH, Li J, He S, et al. Resolving the graft ischemia-reperfusion injury during liver transplantation at the single cell resolution[J]. Cell Death Dis, 2021, 12(6):589.
12
Yang XY, Lu D, Wang R, et al. Single-cell profiling reveals distinct immune phenotypes that contribute to ischaemia-reperfusion injury after steatotic liver transplantation[J]. Cell Prolif, 2021, 54(10):e13116.
13
Li XF, Wu YK, Zhang WF, et al. Pre-conditioning with tanshinone IIA attenuates the ischemia/reperfusion injury caused by liver grafts via regulation of HMGB1 in rat kupffer cells[J]. Biomed Pharmacother, 2017, 89:1392-1400.
14
Wu Y, Zhang W, Li M, et al. Nobiletin ameliorates ischemia-reperfusion injury by suppressing the function of kupffer cells after liver transplantation in rats[J]. Biomed Pharmacother, 2017, 89:732-741.
15
Liu Y, Zhang WF, Cheng Y, et al. Activation of PPARγ by curcumin protects mice from ischemia/reperfusion injury induced by orthotopic liver transplantation via modulating polarization of kupffer cells[J]. Int Immunopharmacol, 2018, 62:270-276.
16
Cheng MX, Cao D, Chen Y, et al. α-ketoglutarate attenuates ischemia-reperfusion injury of liver graft in rats[J]. Biomed Pharmacother, 2019, 111:1141-1146.
17
Cheng MX, Li JZ, Chen Y, et al. VEGF-C attenuates ischemia reperfusion injury of liver graft in rats[J]. Transpl Immunol, 2019, 54:59-64.
18
Deng MH, Wang JY, Wu H, et al. IL-4 alleviates ischaemia-reperfusion injury by inducing kupffer cells M2 polarization via STAT6-JMJD3 pathway after rat liver transplantation[J]. Biomed Res Int, 2020:2953068.
19
Mohammed AS, Liang Rui, Schultze DP, et al. Glycine protects partial liver grafts from kupffer cell-dependent ischemia-reperfusion injury without negative effect on regeneration[J]. Amino Acids, 2019, 51(6):903-911.
20
Gassner JMGV, Nösser M, Moosburner S, et al. Improvement of normothermic ex vivo machine perfusion of rat liver grafts by dialysis and kupffer cell inhibition with glycine[J]. Liver Transpl, 2019, 25(2):275-287.
21
Yue S, Zhou H, Wang X, et al. Prolonged ischemia triggers necrotic depletion of tissue-resident macrophages to facilitate inflammatory immune activation in liver ischemia reperfusion injury[J]. J Immunol, 2017, 198(9):3588-3595.
22
Ou ZB, Zhong H, Zhang L, et al. Macrophage membrane-coated nanoparticles alleviate hepatic ischemia-reperfusion injury caused by orthotopic liver transplantation by neutralizing endotoxin[J]. Int J Nanomedicine, 2020, 15:4125-4138.
23
Dai QQ, Jiang W, Liu H, et al. Kupffer cell-targeting strategy for the protection of hepatic ischemia/reperfusion injury[J]. Nanotechnology, 2021, 32(26): 10.1088/1361-6528/abde02.
24
Ding W, Duan Y, Qu Z, et al. Acidic microenvironment aggravates the severity of hepatic ischemia/reperfusion injury by modulating M1-polarization through regulating PPAR-γ signal[J]. Front Immunol, 2021, 12:697362.
25
Xue R, Qiu J, Wei S, et al. Lycopene alleviates hepatic ischemia reperfusion injury via the Nrf2/HO-1 pathway mediated NLRP3 inflammasome inhibition in kupffer cells[J]. Ann Transl Med, 2021, 9(8):631.
26
Pan GR, Zhao ZF, Tang CY, et al. Soluble fibrinogen-like protein 2 ameliorates acute rejection of liver transplantation in rat via inducing kupffer cells M2 polarization[J]. Cancer Med, 2018, 7(7):3168-3177.
27
Wu H, Xu X, Li J, et al. TIM4 blockade of KCs combined with exogenous TGFβ injection helps to reverse acute rejection and prolong the survival rate of mice receiving liver allografts[J]. Int J Mol Med, 2018, 42(1):346-358.
28
Xu XS, Feng ZH, Cao D, et al. SCARF1 promotes M2 polarization of kupffer cells via calcium-dependent PI3K-AKT-STAT3 signalling to improve liver transplantation[J]. Cell Prolif, 2021, 54(4):e13022.
29
Zhang WK, Cao D, Wang MH, et al. XBP1s repression regulates kupffer cell polarization leading to immune suppressive effects protecting liver allograft in rats[J]. Int Immunopharmacol, 2021, 91:107294.
30
Liu J, Yu Q, Wu W, et al. TLR2 stimulation strengthens intrahepatic myeloid-derived cell-mediated T cell tolerance through inducing kupffer cell expansion and IL-10 production[J]. J Immunol, 2018, 200(7):2341-2351.
31
徐雪松. GPR37经调控Kupffer细胞M2型极化诱导老龄鼠供肝免疫耐受的机制研究[D].重庆:重庆医科大学,2021.
32
刘涛,李金政. 库普弗细胞极化状态在肝移植免疫耐受中的作用[J]. 器官移植2021, 12(6):687-691.
33
Wang ZB, Wu LQ, Pan BL, et al. Interleukin 33 mediates hepatocyte autophagy and innate immune response in the early phase of acetaminophen-induced acute liver injury[J]. Toxicology, 2021, 456:152788.
34
Hu Y, Yang C, Shen G, et al. Hyperglycemia-triggered sphingosine-1-phosphate and sphingosine-1-phosphate receptor 3 signaling worsens liver ischemia/reperfusion injury by regulating M1/M2 polarization[J]. Liver Transpl, 2019, 25(7):1074-1090.
35
Yang F, Wang S, Liu Y, et al. IRE1α aggravates ischemia reperfusion injury of fatty liver by regulating phenotypic transformation of kupffer cells[J]. Free Radic Biol Med, 2018, 124:395-407.
[1] 李坤河, 寇萌佳, 邝立挺. 肝移植术后二次气管插管的危险因素及预测模型的建立[J]. 中华普通外科学文献(电子版), 2023, 17(05): 366-371.
[2] 中华医学会器官移植学分会, 中国医师协会器官移植医师分会, 上海医药行业协会. 中国肝、肾移植受者霉酚酸类药物应用专家共识(2023版)[J]. 中华移植杂志(电子版), 2023, 17(05): 257-272.
[3] 陆闻青, 陈昕怡, 任雪飞. 遗传代谢病儿童肝移植受者术后生活质量调查研究[J]. 中华移植杂志(电子版), 2023, 17(05): 287-292.
[4] 范铁艳, 李君, 陈虹. 肝移植术后新发戊型病毒性肝炎的诊治经验[J]. 中华移植杂志(电子版), 2023, 17(05): 293-296.
[5] 陈朔, 陈峰, 程飞, 项捷. 糖原累积病Ⅰ型并发胰腺炎肝移植术后胰腺梗死一例[J]. 中华移植杂志(电子版), 2023, 17(05): 300-302.
[6] 汤鹏昊, 张武. 肠道微生态与肝移植围手术期并发症相关研究进展[J]. 中华移植杂志(电子版), 2023, 17(05): 303-307.
[7] 严庆, 刘颖, 邓斐文, 陈焕伟. 微血管侵犯对肝癌肝移植患者生存预后的影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 624-629.
[8] 廖梅, 张红君, 金洁玚, 吕艳, 任杰. 床旁超声造影对肝移植术后早期肝动脉血栓的诊断价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 630-634.
[9] 李秉林, 吕少诚, 潘飞, 姜涛, 樊华, 寇建涛, 贺强, 郎韧. 供肝灌注液病原菌与肝移植术后早期感染的相关性分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 656-660.
[10] 吕垒, 冯啸, 何凯明, 曾凯宁, 杨卿, 吕海金, 易慧敏, 易述红, 杨扬, 傅斌生. 改良金氏评分在儿童肝豆状核变性急性肝衰竭肝移植手术时机评估中价值并文献复习[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 661-668.
[11] 王孟龙. 肿瘤生物学特征在肝癌肝移植治疗中的意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 490-494.
[12] 关明函, 薛志强. 右美托咪定改善大鼠脑缺血再灌注后脑损伤的研究[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 270-276.
[13] 杨梦琦, 马慧芬, 訾阳, 王楠, 杜冰玉, 常万鹏, 于少泓. 马黛茶对脑血管疾病防治作用的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(04): 235-240.
[14] 张敏洁, 张小杉, 段莎莎, 施依璐, 赵捷, 白天昊, 王雅晳. 氢气治疗心肌缺血再灌注损伤的作用机制及展望[J]. 中华临床医师杂志(电子版), 2023, 17(06): 744-748.
[15] 张敏洁, 王雅晳, 段莎莎, 施依璐, 付文艳, 赵海玥, 张小杉. 基于GEO数据库和生物信息学分析筛选大鼠心肌缺血再灌注损伤相关潜在通路和靶点[J]. 中华临床医师杂志(电子版), 2023, 17(04): 438-445.
阅读次数
全文


摘要