切换至 "中华医学电子期刊资源库"

中华移植杂志(电子版) ›› 2022, Vol. 16 ›› Issue (05): 314 -318. doi: 10.3877/cma.j.issn.1674-3903.2022.05.010

综述

库普弗细胞在肝移植中的作用研究进展
于长江1, 赵敏杰2, 龚建平2,()   
  1. 1. 402460 重庆市荣昌区妇幼保健院普通外科
    2. 400010 重庆医科大学附属第二医院肝胆外科
  • 收稿日期:2022-09-14 出版日期:2022-10-25
  • 通信作者: 龚建平

Research progress on the role of kupfer cell in liver transplantation

Changjiang Yu1, Minjie Zhao2, Jianping Gong2,()   

  1. 1. Department of General Surgery, Chongqing Rongchang Maternal and Child Health Hospital, Chongqing 402460, China
    2. Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
  • Received:2022-09-14 Published:2022-10-25
  • Corresponding author: Jianping Gong

肝移植被公认为是目前治疗终末期肝病最有效的手段。除要求外科医师精湛的手术技巧外,术后缺血再灌注损伤(IRI)和排斥反应是影响受者预后及远期生存率、生存质量的重要因素。库普弗细胞(KC)是肝脏的常驻巨噬细胞,其在肝移植术后IRI、排斥反应及免疫耐受过程中发挥重要作用。本文对KC在肝移植后IRI、排斥反应及诱导免疫耐受方面作用的研究现状和进展进行综述。

Liver transplantation is recognized as the most effective treatment for end-stage liver diseases. In addition to excellent surgical skills, postoperative ischemia reperfusion injury (IRI) and rejection are important factors affecting the prognosis, long-term survival and life quality of patients. Kupfer cell (KC) is resident macrophages in the liver, which plays a crucial role in the process of IRI, rejection and immune tolerance after liver transplantation. This review summarizes the current status and progress of the research on the effects of KC on IRI, rejection and induction of immune tolerance after liver transplantation.

1
谢闰鹏,谷明旗,张凤博,等. 肝移植手术技术的现状和展望[J]. 器官移植2022, 13(1):105-110.
2
Zhai Y, Busuttil RW, Kupiec-Weglinski JW. Liver ischemia and reperfusion injury: new insights into mechanisms of innate-adaptive immune-mediated tissue inflammation[J]. Am J Transplant, 2011, 11(8):1563-1569.
3
Zhai Y, Petrowsky H, Hong JC, et al. Ischaemia-reperfusion injury in liver transplantation-from bench to bedside[J]. Nat Rev Gastroenterol Hepatol, 2013, 10(2):79-89.
4
Wang H, Xi ZF, Deng L, et al. Macrophage polarization and liver ischemia-reperfusion injury[J]. Int J Med Sci, 2021, 18(5): 1104-1113.
5
Tan L, Jiang W, Lu A, et al. miR-155 aggravates liver ischemia/reperfusion injury by suppressing SOCS1 in mice[J]. Transplant Proc, 2018, 50(10):3831-3839.
6
Ni M, Zhang J, Sosa R, et al. T-cell immunoglobulin and mucin domain-containing protein-4 is critical for kupffer cell homeostatic function in the activation and resolution of liver ischemia reperfusion injury[J]. Hepatology, 2021, 74(4):2118-2132.
7
Dai JW, Chen QS, Huang WF, et al. Liver kinase B1 attenuates liver ischemia/reperfusion injury via inhibiting the NLRP3 inflammasome[J]. Acta Biochim Biophys Sin (Shanghai), 2021, 53(5):601-611.
8
Wang ZY, Han S, Chen XJ, et al. Eva1a inhibits NLRP3 activation to reduce liver ischemia-reperfusion injury via inducing autophagy in kupffer cells[J]. Mol Immunol, 2021, 132:82-92.
9
Ye L, He S, Mao X, et al. Effect of hepatic macrophage polarization and apoptosis on liver ischemia and reperfusion injury during liver transplantation[J]. Front Immunol, 2020, 11:1193.
10
Goikoetxea UN, Serrano-MM, Delgado TC, et al. Mitochondrial bioenergetics boost macrophage activation, promoting liver regeneration in metabolically compromised animals[J]. Hepatology, 2022, 75(3):550-566.
11
Wang LH, Li J, He S, et al. Resolving the graft ischemia-reperfusion injury during liver transplantation at the single cell resolution[J]. Cell Death Dis, 2021, 12(6):589.
12
Yang XY, Lu D, Wang R, et al. Single-cell profiling reveals distinct immune phenotypes that contribute to ischaemia-reperfusion injury after steatotic liver transplantation[J]. Cell Prolif, 2021, 54(10):e13116.
13
Li XF, Wu YK, Zhang WF, et al. Pre-conditioning with tanshinone IIA attenuates the ischemia/reperfusion injury caused by liver grafts via regulation of HMGB1 in rat kupffer cells[J]. Biomed Pharmacother, 2017, 89:1392-1400.
14
Wu Y, Zhang W, Li M, et al. Nobiletin ameliorates ischemia-reperfusion injury by suppressing the function of kupffer cells after liver transplantation in rats[J]. Biomed Pharmacother, 2017, 89:732-741.
15
Liu Y, Zhang WF, Cheng Y, et al. Activation of PPARγ by curcumin protects mice from ischemia/reperfusion injury induced by orthotopic liver transplantation via modulating polarization of kupffer cells[J]. Int Immunopharmacol, 2018, 62:270-276.
16
Cheng MX, Cao D, Chen Y, et al. α-ketoglutarate attenuates ischemia-reperfusion injury of liver graft in rats[J]. Biomed Pharmacother, 2019, 111:1141-1146.
17
Cheng MX, Li JZ, Chen Y, et al. VEGF-C attenuates ischemia reperfusion injury of liver graft in rats[J]. Transpl Immunol, 2019, 54:59-64.
18
Deng MH, Wang JY, Wu H, et al. IL-4 alleviates ischaemia-reperfusion injury by inducing kupffer cells M2 polarization via STAT6-JMJD3 pathway after rat liver transplantation[J]. Biomed Res Int, 2020:2953068.
19
Mohammed AS, Liang Rui, Schultze DP, et al. Glycine protects partial liver grafts from kupffer cell-dependent ischemia-reperfusion injury without negative effect on regeneration[J]. Amino Acids, 2019, 51(6):903-911.
20
Gassner JMGV, Nösser M, Moosburner S, et al. Improvement of normothermic ex vivo machine perfusion of rat liver grafts by dialysis and kupffer cell inhibition with glycine[J]. Liver Transpl, 2019, 25(2):275-287.
21
Yue S, Zhou H, Wang X, et al. Prolonged ischemia triggers necrotic depletion of tissue-resident macrophages to facilitate inflammatory immune activation in liver ischemia reperfusion injury[J]. J Immunol, 2017, 198(9):3588-3595.
22
Ou ZB, Zhong H, Zhang L, et al. Macrophage membrane-coated nanoparticles alleviate hepatic ischemia-reperfusion injury caused by orthotopic liver transplantation by neutralizing endotoxin[J]. Int J Nanomedicine, 2020, 15:4125-4138.
23
Dai QQ, Jiang W, Liu H, et al. Kupffer cell-targeting strategy for the protection of hepatic ischemia/reperfusion injury[J]. Nanotechnology, 2021, 32(26): 10.1088/1361-6528/abde02.
24
Ding W, Duan Y, Qu Z, et al. Acidic microenvironment aggravates the severity of hepatic ischemia/reperfusion injury by modulating M1-polarization through regulating PPAR-γ signal[J]. Front Immunol, 2021, 12:697362.
25
Xue R, Qiu J, Wei S, et al. Lycopene alleviates hepatic ischemia reperfusion injury via the Nrf2/HO-1 pathway mediated NLRP3 inflammasome inhibition in kupffer cells[J]. Ann Transl Med, 2021, 9(8):631.
26
Pan GR, Zhao ZF, Tang CY, et al. Soluble fibrinogen-like protein 2 ameliorates acute rejection of liver transplantation in rat via inducing kupffer cells M2 polarization[J]. Cancer Med, 2018, 7(7):3168-3177.
27
Wu H, Xu X, Li J, et al. TIM4 blockade of KCs combined with exogenous TGFβ injection helps to reverse acute rejection and prolong the survival rate of mice receiving liver allografts[J]. Int J Mol Med, 2018, 42(1):346-358.
28
Xu XS, Feng ZH, Cao D, et al. SCARF1 promotes M2 polarization of kupffer cells via calcium-dependent PI3K-AKT-STAT3 signalling to improve liver transplantation[J]. Cell Prolif, 2021, 54(4):e13022.
29
Zhang WK, Cao D, Wang MH, et al. XBP1s repression regulates kupffer cell polarization leading to immune suppressive effects protecting liver allograft in rats[J]. Int Immunopharmacol, 2021, 91:107294.
30
Liu J, Yu Q, Wu W, et al. TLR2 stimulation strengthens intrahepatic myeloid-derived cell-mediated T cell tolerance through inducing kupffer cell expansion and IL-10 production[J]. J Immunol, 2018, 200(7):2341-2351.
31
徐雪松. GPR37经调控Kupffer细胞M2型极化诱导老龄鼠供肝免疫耐受的机制研究[D].重庆:重庆医科大学,2021.
32
刘涛,李金政. 库普弗细胞极化状态在肝移植免疫耐受中的作用[J]. 器官移植2021, 12(6):687-691.
33
Wang ZB, Wu LQ, Pan BL, et al. Interleukin 33 mediates hepatocyte autophagy and innate immune response in the early phase of acetaminophen-induced acute liver injury[J]. Toxicology, 2021, 456:152788.
34
Hu Y, Yang C, Shen G, et al. Hyperglycemia-triggered sphingosine-1-phosphate and sphingosine-1-phosphate receptor 3 signaling worsens liver ischemia/reperfusion injury by regulating M1/M2 polarization[J]. Liver Transpl, 2019, 25(7):1074-1090.
35
Yang F, Wang S, Liu Y, et al. IRE1α aggravates ischemia reperfusion injury of fatty liver by regulating phenotypic transformation of kupffer cells[J]. Free Radic Biol Med, 2018, 124:395-407.
[1] 李丽, 何恩辉, 徐瑞芳, 易展雄, 朱志军, 孙丽莹, 魏林, 曲伟, 曾志贵, 刘颖, 钱林学. 超声造影在诊断儿童移植肝动脉闭塞中的作用[J]. 中华医学超声杂志(电子版), 2022, 19(07): 701-706.
[2] 张秀杨, 张龙飞, 陈世远, 高涌. 缺氧诱导因子1α介导单羧酸转运蛋白1表达参与短链脂肪酸对肠道缺氧保护作用的研究[J]. 中华普通外科学文献(电子版), 2023, 17(01): 18-23.
[3] 陈思敏, 张颖, 曹宏泰, 毛杰. 加速康复外科在公民逝世后器官捐献肝移植围手术期的实践[J]. 中华普通外科学文献(电子版), 2022, 16(04): 290-292.
[4] 杨守国. 心脏移植术后抗体介导排斥反应研究现况与进展[J]. 中华移植杂志(电子版), 2022, 16(05): 266-276.
[5] 钱永兵, 杭化莲, 张灏旻, 邓羽霄, 陈小松, 夏强. 慢加急性肝衰竭肝移植术后早期并发播散性曲霉病一例[J]. 中华移植杂志(电子版), 2022, 16(05): 306-308.
[6] 宓宏潮, 房炯泽, 吴胜东, 黄静, 卢长江, 毛书奇, 陆才德. 肝移植术后早期感染危险因素分析及预测[J]. 中华移植杂志(电子版), 2022, 16(04): 216-223.
[7] 张晋平, 朱志军, 孙丽莹, 魏林, 曲伟, 曾志贵, 张海明. 活体肝移植供肝脂肪变性评估研究进展[J]. 中华移植杂志(电子版), 2022, 16(04): 249-255.
[8] 卢强, 杨丽斐, 刘康, 余佳薇, 任璐, 张谞丰, 吕毅. 供肝免冲洗灌注的大鼠肝移植实验研究[J]. 中华肝脏外科手术学电子杂志, 2023, 12(01): 103-107.
[9] 王宁, 宋九林, 杨家印, 严律南, 吴泓, 蒋利. 腹腔镜下活体供肝扩大左外叶切取[J]. 中华肝脏外科手术学电子杂志, 2022, 11(06): 657-657.
[10] 易述红, 杨卿. 在体完全左右半肝劈离术[J]. 中华肝脏外科手术学电子杂志, 2022, 11(06): 658-658.
[11] 杨卿, 梁智星, 易述红, 易慧敏, 张彤, 傅斌生, 曾凯宁, 冯啸, 张英才, 姚嘉, 唐晖, 刘剑戎, 魏绪霞, 陈规划, 杨扬. 合并高钠血症供肝在劈离式肝移植中的应用[J]. 中华肝脏外科手术学电子杂志, 2022, 11(06): 586-591.
[12] 曾凯宁, 杨卿, 易述红, 张彤, 傅斌生, 姚嘉, 冯啸, 杨扬. 儿童劈离式肝移植术后肝动脉血栓形成的预防策略[J]. 中华肝脏外科手术学电子杂志, 2022, 11(06): 592-595.
[13] 刘琦, 史冀华, 张水军. 活体肝移植术后的小肝综合征[J]. 中华肝脏外科手术学电子杂志, 2022, 11(06): 645-648.
[14] 谷艳梅, 栗光明, 席双梅, 刘薪, 武秀莲, 王鑫, 金伯旬. 集束化ERAS方案在肝移植术后恢复中的应用[J]. 中华肝脏外科手术学电子杂志, 2022, 11(05): 476-481.
[15] 刘志强, 窦项洁, 刘白露, 董晓萌, 鲍俊宇. 银杏达莫注射液对大鼠肝缺血再灌注损伤的保护作用机制研究[J]. 中华诊断学电子杂志, 2022, 10(04): 259-265.
阅读次数
全文


摘要