切换至 "中华医学电子期刊资源库"

中华移植杂志(电子版) ›› 2022, Vol. 16 ›› Issue (05) : 314 -318. doi: 10.3877/cma.j.issn.1674-3903.2022.05.010

综述

库普弗细胞在肝移植中的作用研究进展
于长江1, 赵敏杰2, 龚建平2,()   
  1. 1. 402460 重庆市荣昌区妇幼保健院普通外科
    2. 400010 重庆医科大学附属第二医院肝胆外科
  • 收稿日期:2022-09-14 出版日期:2022-10-25
  • 通信作者: 龚建平

Research progress on the role of kupfer cell in liver transplantation

Changjiang Yu1, Minjie Zhao2, Jianping Gong2,()   

  1. 1. Department of General Surgery, Chongqing Rongchang Maternal and Child Health Hospital, Chongqing 402460, China
    2. Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
  • Received:2022-09-14 Published:2022-10-25
  • Corresponding author: Jianping Gong
引用本文:

于长江, 赵敏杰, 龚建平. 库普弗细胞在肝移植中的作用研究进展[J/OL]. 中华移植杂志(电子版), 2022, 16(05): 314-318.

Changjiang Yu, Minjie Zhao, Jianping Gong. Research progress on the role of kupfer cell in liver transplantation[J/OL]. Chinese Journal of Transplantation(Electronic Edition), 2022, 16(05): 314-318.

肝移植被公认为是目前治疗终末期肝病最有效的手段。除要求外科医师精湛的手术技巧外,术后缺血再灌注损伤(IRI)和排斥反应是影响受者预后及远期生存率、生存质量的重要因素。库普弗细胞(KC)是肝脏的常驻巨噬细胞,其在肝移植术后IRI、排斥反应及免疫耐受过程中发挥重要作用。本文对KC在肝移植后IRI、排斥反应及诱导免疫耐受方面作用的研究现状和进展进行综述。

Liver transplantation is recognized as the most effective treatment for end-stage liver diseases. In addition to excellent surgical skills, postoperative ischemia reperfusion injury (IRI) and rejection are important factors affecting the prognosis, long-term survival and life quality of patients. Kupfer cell (KC) is resident macrophages in the liver, which plays a crucial role in the process of IRI, rejection and immune tolerance after liver transplantation. This review summarizes the current status and progress of the research on the effects of KC on IRI, rejection and induction of immune tolerance after liver transplantation.

1
谢闰鹏,谷明旗,张凤博,等. 肝移植手术技术的现状和展望[J]. 器官移植2022, 13(1):105-110.
2
Zhai Y, Busuttil RW, Kupiec-Weglinski JW. Liver ischemia and reperfusion injury: new insights into mechanisms of innate-adaptive immune-mediated tissue inflammation[J]. Am J Transplant, 2011, 11(8):1563-1569.
3
Zhai Y, Petrowsky H, Hong JC, et al. Ischaemia-reperfusion injury in liver transplantation-from bench to bedside[J]. Nat Rev Gastroenterol Hepatol, 2013, 10(2):79-89.
4
Wang H, Xi ZF, Deng L, et al. Macrophage polarization and liver ischemia-reperfusion injury[J]. Int J Med Sci, 2021, 18(5): 1104-1113.
5
Tan L, Jiang W, Lu A, et al. miR-155 aggravates liver ischemia/reperfusion injury by suppressing SOCS1 in mice[J]. Transplant Proc, 2018, 50(10):3831-3839.
6
Ni M, Zhang J, Sosa R, et al. T-cell immunoglobulin and mucin domain-containing protein-4 is critical for kupffer cell homeostatic function in the activation and resolution of liver ischemia reperfusion injury[J]. Hepatology, 2021, 74(4):2118-2132.
7
Dai JW, Chen QS, Huang WF, et al. Liver kinase B1 attenuates liver ischemia/reperfusion injury via inhibiting the NLRP3 inflammasome[J]. Acta Biochim Biophys Sin (Shanghai), 2021, 53(5):601-611.
8
Wang ZY, Han S, Chen XJ, et al. Eva1a inhibits NLRP3 activation to reduce liver ischemia-reperfusion injury via inducing autophagy in kupffer cells[J]. Mol Immunol, 2021, 132:82-92.
9
Ye L, He S, Mao X, et al. Effect of hepatic macrophage polarization and apoptosis on liver ischemia and reperfusion injury during liver transplantation[J]. Front Immunol, 2020, 11:1193.
10
Goikoetxea UN, Serrano-MM, Delgado TC, et al. Mitochondrial bioenergetics boost macrophage activation, promoting liver regeneration in metabolically compromised animals[J]. Hepatology, 2022, 75(3):550-566.
11
Wang LH, Li J, He S, et al. Resolving the graft ischemia-reperfusion injury during liver transplantation at the single cell resolution[J]. Cell Death Dis, 2021, 12(6):589.
12
Yang XY, Lu D, Wang R, et al. Single-cell profiling reveals distinct immune phenotypes that contribute to ischaemia-reperfusion injury after steatotic liver transplantation[J]. Cell Prolif, 2021, 54(10):e13116.
13
Li XF, Wu YK, Zhang WF, et al. Pre-conditioning with tanshinone IIA attenuates the ischemia/reperfusion injury caused by liver grafts via regulation of HMGB1 in rat kupffer cells[J]. Biomed Pharmacother, 2017, 89:1392-1400.
14
Wu Y, Zhang W, Li M, et al. Nobiletin ameliorates ischemia-reperfusion injury by suppressing the function of kupffer cells after liver transplantation in rats[J]. Biomed Pharmacother, 2017, 89:732-741.
15
Liu Y, Zhang WF, Cheng Y, et al. Activation of PPARγ by curcumin protects mice from ischemia/reperfusion injury induced by orthotopic liver transplantation via modulating polarization of kupffer cells[J]. Int Immunopharmacol, 2018, 62:270-276.
16
Cheng MX, Cao D, Chen Y, et al. α-ketoglutarate attenuates ischemia-reperfusion injury of liver graft in rats[J]. Biomed Pharmacother, 2019, 111:1141-1146.
17
Cheng MX, Li JZ, Chen Y, et al. VEGF-C attenuates ischemia reperfusion injury of liver graft in rats[J]. Transpl Immunol, 2019, 54:59-64.
18
Deng MH, Wang JY, Wu H, et al. IL-4 alleviates ischaemia-reperfusion injury by inducing kupffer cells M2 polarization via STAT6-JMJD3 pathway after rat liver transplantation[J]. Biomed Res Int, 2020:2953068.
19
Mohammed AS, Liang Rui, Schultze DP, et al. Glycine protects partial liver grafts from kupffer cell-dependent ischemia-reperfusion injury without negative effect on regeneration[J]. Amino Acids, 2019, 51(6):903-911.
20
Gassner JMGV, Nösser M, Moosburner S, et al. Improvement of normothermic ex vivo machine perfusion of rat liver grafts by dialysis and kupffer cell inhibition with glycine[J]. Liver Transpl, 2019, 25(2):275-287.
21
Yue S, Zhou H, Wang X, et al. Prolonged ischemia triggers necrotic depletion of tissue-resident macrophages to facilitate inflammatory immune activation in liver ischemia reperfusion injury[J]. J Immunol, 2017, 198(9):3588-3595.
22
Ou ZB, Zhong H, Zhang L, et al. Macrophage membrane-coated nanoparticles alleviate hepatic ischemia-reperfusion injury caused by orthotopic liver transplantation by neutralizing endotoxin[J]. Int J Nanomedicine, 2020, 15:4125-4138.
23
Dai QQ, Jiang W, Liu H, et al. Kupffer cell-targeting strategy for the protection of hepatic ischemia/reperfusion injury[J]. Nanotechnology, 2021, 32(26): 10.1088/1361-6528/abde02.
24
Ding W, Duan Y, Qu Z, et al. Acidic microenvironment aggravates the severity of hepatic ischemia/reperfusion injury by modulating M1-polarization through regulating PPAR-γ signal[J]. Front Immunol, 2021, 12:697362.
25
Xue R, Qiu J, Wei S, et al. Lycopene alleviates hepatic ischemia reperfusion injury via the Nrf2/HO-1 pathway mediated NLRP3 inflammasome inhibition in kupffer cells[J]. Ann Transl Med, 2021, 9(8):631.
26
Pan GR, Zhao ZF, Tang CY, et al. Soluble fibrinogen-like protein 2 ameliorates acute rejection of liver transplantation in rat via inducing kupffer cells M2 polarization[J]. Cancer Med, 2018, 7(7):3168-3177.
27
Wu H, Xu X, Li J, et al. TIM4 blockade of KCs combined with exogenous TGFβ injection helps to reverse acute rejection and prolong the survival rate of mice receiving liver allografts[J]. Int J Mol Med, 2018, 42(1):346-358.
28
Xu XS, Feng ZH, Cao D, et al. SCARF1 promotes M2 polarization of kupffer cells via calcium-dependent PI3K-AKT-STAT3 signalling to improve liver transplantation[J]. Cell Prolif, 2021, 54(4):e13022.
29
Zhang WK, Cao D, Wang MH, et al. XBP1s repression regulates kupffer cell polarization leading to immune suppressive effects protecting liver allograft in rats[J]. Int Immunopharmacol, 2021, 91:107294.
30
Liu J, Yu Q, Wu W, et al. TLR2 stimulation strengthens intrahepatic myeloid-derived cell-mediated T cell tolerance through inducing kupffer cell expansion and IL-10 production[J]. J Immunol, 2018, 200(7):2341-2351.
31
徐雪松. GPR37经调控Kupffer细胞M2型极化诱导老龄鼠供肝免疫耐受的机制研究[D].重庆:重庆医科大学,2021.
32
刘涛,李金政. 库普弗细胞极化状态在肝移植免疫耐受中的作用[J]. 器官移植2021, 12(6):687-691.
33
Wang ZB, Wu LQ, Pan BL, et al. Interleukin 33 mediates hepatocyte autophagy and innate immune response in the early phase of acetaminophen-induced acute liver injury[J]. Toxicology, 2021, 456:152788.
34
Hu Y, Yang C, Shen G, et al. Hyperglycemia-triggered sphingosine-1-phosphate and sphingosine-1-phosphate receptor 3 signaling worsens liver ischemia/reperfusion injury by regulating M1/M2 polarization[J]. Liver Transpl, 2019, 25(7):1074-1090.
35
Yang F, Wang S, Liu Y, et al. IRE1α aggravates ischemia reperfusion injury of fatty liver by regulating phenotypic transformation of kupffer cells[J]. Free Radic Biol Med, 2018, 124:395-407.
[1] 陈进宏. 腹腔镜活体供肝获取规范与创新[J/OL]. 中华普通外科学文献(电子版), 2024, 18(05): 324-324.
[2] 中华医学会器官移植学分会, 中国医师协会器官移植医师分会. 中国活体肝移植供者微创手术技术指南(2024版)[J/OL]. 中华普通外科学文献(电子版), 2024, 18(04): 241-252.
[3] 唐亦骁, 陈峻, 连正星, 胡海涛, 鲁迪, 徐骁, 卫强. 白果内酯对小鼠肝缺血再灌注损伤保护作用研究[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 278-282.
[4] 胡宁宁, 赵延荣, 王栋, 王胜亮, 郭源. FMNL3与肝细胞癌肝移植受者预后的相关性研究[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 283-288.
[5] 仲福顺, 余露, 范晓礼, 叶啟发. 肝移植治疗肝上皮样血管内皮瘤一例[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 293-297.
[6] 刘冉佳, 崔向丽, 周效竹, 曲伟, 朱志军. 儿童肝移植受者健康相关生存质量评价的荟萃分析[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 302-309.
[7] 贺健, 张骊, 王洪海, 蒋文涛. 肝移植术后脾功能亢进转归及治疗研究进展[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 310-314.
[8] 郭倩男, 史嘉玮, 董念国. T细胞不同代谢方式在移植排斥反应中的研究进展[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 315-320.
[9] 孙璐, 蒋亚玲, 陈凌君. 布托啡诺对脑缺血再灌注损伤大鼠神经炎症和JAK2/STAT3信号通路的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 344-350.
[10] 中华医学会器官移植学分会. 肝移植术后缺血性胆道病变诊断与治疗中国实践指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 739-748.
[11] 傅斌生, 冯啸, 杨卿, 曾凯宁, 姚嘉, 唐晖, 刘剑戎, 魏绪霞, 易慧敏, 易述红, 陈规划, 杨扬. 脂肪变性供肝在成人劈离式肝移植中的应用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 789-794.
[12] 魏志鸿, 刘建勇, 吴小雅, 杨芳, 吕立志, 江艺, 蔡秋程. 肝移植术后急性移植物抗宿主病的诊治(附四例报告)[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 846-851.
[13] 中华医学会器官移植学分会, 中华医学会外科学分会外科手术学学组, 中华医学会外科学分会移植学组, 华南劈离式肝移植联盟. 劈离式供肝儿童肝移植中国临床操作指南[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 593-601.
[14] 刘军, 丘文静, 孙方昊, 李松盈, 易述红, 傅斌生, 杨扬, 罗慧. 在体与离体劈离式肝移植在儿童肝移植中的应用比较[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 688-693.
[15] 李京, 牛博, 刘晓蓓, 魏新雪, 黄荣. circ-SESN2 沉默靶向调控miRNA-23a-5p/ULK1 在神经细胞氧化应激损伤中的作用机制研究[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(05): 263-272.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?