切换至 "中华医学电子期刊资源库"

中华移植杂志(电子版) ›› 2024, Vol. 18 ›› Issue (05) : 315 -320. doi: 10.3877/cma.j.issn.1674-3903.2024.05.011

综述

T细胞不同代谢方式在移植排斥反应中的研究进展
郭倩男1, 史嘉玮1, 董念国1,()   
  1. 1.430022 武汉,华中科技大学同济医学院附属协和医院心脏大血管外科
  • 收稿日期:2024-03-29 出版日期:2024-10-25
  • 通信作者: 董念国

Research progress on the metabolic pathways of T cells in transplant rejection

Qiannan Guo1, Jiawei Shi1, Nianguo Dong1,()   

  1. 1.Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
  • Received:2024-03-29 Published:2024-10-25
  • Corresponding author: Nianguo Dong
引用本文:

郭倩男, 史嘉玮, 董念国. T细胞不同代谢方式在移植排斥反应中的研究进展[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 315-320.

Qiannan Guo, Jiawei Shi, Nianguo Dong. Research progress on the metabolic pathways of T cells in transplant rejection[J/OL]. Chinese Journal of Transplantation(Electronic Edition), 2024, 18(05): 315-320.

器官移植是治疗终末期器官衰竭的有效手段,但移植排斥反应和免疫抑制治疗的不良反应仍是影响器官存活和受者预后的重要因素。在移植排斥反应中,T细胞扮演着核心角色。它们通过识别外来抗原并激活免疫反应,导致移植器官损伤。如何制订既能有效抑制排斥反应,又不影响机体正常免疫功能的免疫抑制策略,已成为研究者和临床医师亟待解决的重要课题。T细胞的功能依赖于其能量代谢途径,能量供应不仅满足T细胞增殖和生长的需要,也为其执行免疫功能提供重要底物。近年来,越来越多的研究表明,T细胞的代谢特征与免疫反应的发生和调控密切相关,其代谢途径及代谢产物可能成为调节免疫应答的新靶点。因此,干预T细胞代谢被认为是一种潜在的调节移植物耐受性的策略。本综述旨在探讨T细胞代谢特征及其在移植免疫中的作用,重点总结近年来通过调节代谢途径促进移植物耐受性的研究进展,分析其潜在的临床应用前景。我们认为,未来的免疫抑制方案可能结合代谢调控,以实现更加精准地免疫耐受,从而提高器官移植的成功率和受者的长期生存质量。

Organ transplantation is an effective treatment for end-stage organ failure, but the survival of transplanted organs is significantly limited by transplant rejection and the adverse effects of immunosuppressive therapies. T cells play a central role in transplant rejection, as they recognize foreign antigens, become activated, and initiate effector responses that lead to organ damage.Identifying immunosuppressive strategies that can effectively suppress rejection while preserving normal immune function remains a major challenge for researchers and clinicians. T cell function is heavily dependent on metabolic pathways, which not only provide the energy required for T cell growth and proliferation but also supply essential substrates for immune responses. Increasing evidence suggests that the metabolic characteristics of T cells are closely linked to the initiation and regulation of immune responses, and metabolic pathways and metabolites may serve as novel targets for modulating immune responses. Consequently, modulating T cell metabolism is being explored as a potential strategy to promote transplant tolerance. This review focuses on the metabolic characteristics of T cells and their role in transplant immunity. We summarize recent advances in the regulation of transplant tolerance through metabolic interventions and discuss the potential clinical applications of these strategies. We propose that future immunosuppressive protocols may incorporate metabolic modulation, offering a more precise approach to immune tolerance and improving both transplant success and long-term patient survival.

1
Parlakpinar H, Gunata M. Transplantation and immunosuppression:a review of novel transplant-related immunosuppressant drugs[J].Immunopharmacol Immunotoxicol, 2021,43(6):651-665.
2
Sayegh MH, Carpenter CB. Transplantation 50 years later-progress,challenges, and promises[J]. N Engl J Med, 2004,351(26):2761-2766.
3
Meneghini M, Bestard O, Grinyo JM. Immunosuppressive drugs modes of action[J]. Best Pract Res Clin Gastroenterol, 2021,54-55:101757.
4
Stucker F, Ackermann D. Immunosuppressive drugs - how they work,their side effects and interactions[J]. Ther Umsch, 2011,68(12):679-686.
5
Tran DT, Sundararaj K, Atkinson C, et al. T-cell immunometabolism:therapeutic implications in organ transplantation[J]. Transplantation,2021,105(11):e191-e201.
6
Mathis D, Shoelson SE. Immunometabolism:an emerging frontier[J]. Nat Rev Immunol, 2011,11(2):81.
7
江彬, 赵文涛, 欧阳聪, 等. 细胞代谢调控网络[J]. 厦门大学学报(自然科学版), 2022,61(3):346-364.
8
Iyer A, Brown L, Whitehead JP, et al. Nutrient and immune sensing are obligate pathways in metabolism, immunity, and disease[J].FASEB J, 2015,29(9):3612-3625.
9
刘娟宏, 刘峰. 免疫与代谢:网络调控、取舍权衡与机体稳态[J]. 中国科学:生命科学, 2024,54(11):2079-2099.
10
McNelis JC, Olefsky JM. Macrophages, immunity, and metabolic disease[J]. Immunity, 2014,41(1):36-48.
11
Wahl DR, Byersdorfer CA, Ferrara JL, et al. Distinct metabolic programs in activated T cells:opportunities for selective immunomodulation[J]. Immunol Rev, 2012,249(1):104-115.
12
MacIver NJ, Michalek RD, Rathmell JC. Metabolic regulation of T lymphocytes[J]. Annu Rev Immunol, 2013,31:259-283.
13
Pearce EL, Poffenberger MC, Chang CH, et al. Fueling immunity:insights into metabolism and lymphocyte function[J]. Science,2013,342(6155):1242454.
14
Fox CJ, Hammerman PS, Thompson CB. Fuel feeds function:energy metabolism and the T-cell response[J]. Nat Rev Immunol, 2005,5(11):844-852.
15
Masopust D, Schenkel JM. The integration of T cell migration,differentiation and function[J]. Nat Rev Immunol, 2013,13(5):309-320.
16
Buck MD, O′Sullivan D, Pearce EL. T cell metabolism drives immunity[J]. J Exp Med, 2015,212(9):1345-1360.
17
Zarrinpar A, Bensinger SJ. The therapeutic potential of T cell metabolism[J]. Am J Transplant, 2017,17(7):1705-1712.
18
Pearce EL, Pearce EJ. Metabolic pathways in immune cell activation and quiescence[J]. Immunity, 2013,38(4):633-643.
19
Priyadharshini B, Turka LA. T-cell energy metabolism as a controller of cell fate in transplantation[J]. Curr Opin Organ Transplant,2015,20(1):21-28.
20
Piotrkowski J, Buda N, Januszko-Giergielewicz B, et al. Use of bedside ultrasound to assess fluid status:a literature review[J]. Pol Arch Intern Med, 2019,129(10):692-699.
21
Madden MZ, Rathmell JC. The complex integration of T-cell metabolism and immunotherapy[J]. Cancer Discov, 2021,11(7):1636-1643.
22
Patel CH, Powell JD. Targeting T cell metabolism to regulate T cell activation, differentiation and function in disease[J]. Curr Opin Immunol, 2017,46:82-88.
23
Dimeloe S, Burgener AV, Grahlert J, et al. T-cell metabolism governing activation, proliferation and differentiation; a modular view[J]. Immunology, 2017,150(1):35-44.
24
Matarese G, Colamatteo A, De Rosa V. Metabolic fuelling of proper T cell functions[J]. Immunol Lett, 2014,161(2):174-178.
25
Donnelly RP, Finlay DK. Glucose, glycolysis and lymphocyte responses[J]. Mol Immunol, 2015,68(2 Pt C):513-519.
26
Cretenet G, Clerc I, Matias M, et al. Cell surface Glut1 levels distinguish human CD4 and CD8 T lymphocyte subsets with distinct effector functions[J]. Sci Rep, 2016,6:24129.
27
Geltink RIK, Kyle RL, Pearce EL. Unraveling the complex interplay between T cell metabolism and function[J]. Annu Rev Immunol,2018,36:461-488.
28
Diniz VLS, Alvares-Saraiva AM, Serdan TDA, et al. Essential metabolism required for T and B lymphocyte functions:an update[J]. Clin Sci (Lond), 2023,137(10):807-821.
29
Palmer CS, Hussain T, Duette G, et al. Regulators of glucose metabolism in CD4+ and CD8+T cells[J]. Int Rev Immunol, 2016,35(6):477-488.
30
Chang CH, Curtis JD, Maggi LB Jr, et al. Posttranscriptional control of T cell effector function by aerobic glycolysis[J]. Cell, 2013,153(6):1239-1251.
31
Gerriets VA, Rathmell JC. Metabolic pathways in T cell fate and function[J]. Trends Immunol, 2012,33(4):168-173.
32
Michalek RD, Gerriets VA, Jacobs SR, et al. Cutting edge:distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+T cell subsets[J]. J Immunol, 2011,186(6):3299-3303.
33
Nguyen HD, Chatterjee S, Haarberg KM, et al. Metabolic reprogramming of alloantigen-activated T cells after hematopoietic cell transplantation[J]. J Clin Invest, 2016,126(4):1337-1352.
34
Gatza E, Wahl DR, Opipari AW, et al. Manipulating the bioenergetics of alloreactive T cells causes their selective apoptosis and arrests graft-versus-host disease[J]. Sci Transl Med, 2011,3(67):67ra8.
35
王帅威, 罗雪瑞, 李扬扬, 等. T细胞代谢及其调节研究进展[J]. 生命科学, 2016,28(2):222-230.
36
Braun MY. The natural history of T cell metabolism[J]. Int J Mol Sci, 2021,22(13):6779.
37
DeBose-Boyd RA. Significance and regulation of lipid metabolism[J]. Semin Cell Dev Biol, 2018,81:97.
38
Kidani Y, Elsaesser H, Hock MB, et al. Sterol regulatory elementbinding proteins are essential for the metabolic programming of effector T cells and adaptive immunity[J]. Nat Immunol, 2013,14(5):489-499.
39
Pinzon Grimaldos A, Bini S, Pacella I, et al. The role of lipid metabolism in shaping the expansion and the function of regulatory T cells[J]. Clin Exp Immunol, 2022,208(2):181-192.
40
Lim SA, Su W, Chapman NM, et al. Lipid metabolism in T cell signaling and function[J]. Nat Chem Biol, 2022,18(5):470-481.
41
van der Windt GJ, Everts B, Chang CH, et al. Mitochondrial respiratory capacity is a critical regulator of CD8+T cell memory development[J]. Immunity, 2012,36(1):68-78.
42
Cai F, Jin S, Chen G. The effect of lipid metabolism on CD4+T cells[J]. Mediators Inflamm, 2021:6634532.
43
Sakaguchi S, Yamaguchi T, Nomura T, et al. Regulatory T cells and immune tolerance[J]. Cell, 2008,133(5):775-787.
44
Howie D, Ten Bokum A, Necula AS, et al. The role of lipid metabolism in T lymphocyte differentiation and survival[J]. Front Immunol, 2017,8:1949.
45
Choi JM, Bothwell AL. The nuclear receptor PPARs as important regulators of T-cell functions and autoimmune diseases[J]. Mol Cells, 2012,33(3):217-222.
46
Zeng H, Yang K, Cloer C, et al. mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function[J].Nature, 2013,499(7459):485-490.
47
Werlen G, Jain R, Jacinto E. MTOR signaling and metabolism in early T cell development[J]. Genes (Basel), 2021,12(5):728.
48
Huang H, Long L, Zhou P, et al. mTOR signaling at the crossroads of environmental signals and T-cell fate decisions[J]. Immunol Rev,2020,295(1):15-38.
49
Chapman NM, Chi H. mTOR signaling, Tregs and immune modulation[J]. Immunotherapy, 2014,6(12):1295-1311.
50
Yang L, Chu Z, Liu M, et al. Amino acid metabolism in immune cells:essential regulators of the effector functions, and promising opportunities to enhance cancer immunotherapy[J]. J Hematol Oncol, 2023,16(1):59.
51
Le Bourgeois T, Strauss L, Aksoylar HI, et al. Targeting T cell metabolism for improvement of cancer immunotherapy[J]. Front Oncol, 2018,8:237.
52
Siska PJ, Kim B, Ji X, et al. Fluorescence-based measurement of cystine uptake through xCT shows requirement for ROS detoxification in activated lymphocytes[J]. J Immunol Methods, 2016,438:51-58.
53
Munn DH, Zhou M, Attwood JT, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism[J]. Science, 1998,281(5380):1191-1193.
54
Boros FA, Vécsei L. Immunomodulatory effects of genetic alterations affecting the kynurenine pathway[J]. Front Immunol, 2019,10:2570.
55
Zhang A, Carroll C, Raigani S, et al. Tryptophan metabolism via the kynurenine pathway:implications for graft optimization during machine perfusion[J]. J Clin Med, 2020,9(6):1864.
56
Zheng X, Zhang A, Binnie M, et al. Kynurenine 3-monooxygenase is a critical regulator of renal ischemia-reperfusion injury[J]. Exp Mol Med, 2019,51(2):1-14.
57
Macintyre AN, Gerriets VA, Nichols AG, et al. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function[J]. Cell Metab, 2014,20(1):61-72.
58
Park MJ, Lee SY, Moon SJ, et al. Metformin attenuates graft-versushost disease via restricting mammalian target of rapamycin/signal transducer and activator of transcription 3 and promoting adenosine monophosphate-activated protein kinase-autophagy for the balance between T helper 17 and Tregs[J]. Transl Res, 2016,173:115-130.
59
He L. Metformin and systemic metabolism[J]. Trends Pharmacol Sci, 2020,41(11):868-881.
60
Guo Y, Shi J, Wang Q, et al. Metformin alleviates allergic airway inflammation and increases Treg cells in obese asthma[J]. J Cell Mol Med, 2021,25(4):2279-2284.
61
Byersdorfer CA, Tkachev V, Opipari AW, et al. Effector T cells require fatty acid metabolism during murine graft-versus-host disease[J]. Blood, 2013,122(18):3230-3237.
62
Lee CF, Lo YC, Cheng CH, et al. Preventing allograft rejection by targeting immune metabolism[J]. Cell Rep, 2015,13(4):760-770.
63
O′Neill LA, Kishton RJ, Rathmell J. A guide to immunometabolism for immunologists[J]. Nat Rev Immunol, 2016,16(9):553-565.
64
Jewell JL, Kim YC, Russell RC, et al. Metabolism. Differential regulation of mTORC1 by leucine and glutamine[J]. Science, 2015,347(6218):194-198.
[1] 张凯, 乔永杰, 林志强, 刘健, 邓泽群, 谭飞, 曾健康, 李嘉欢, 李培杰, 周胜虎. 假体周围骨溶解中巨噬细胞极化的机制研究进展[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 618-625.
[2] 孙亚慧, 李甜甜. 在重症急性胰腺炎患者继发感染中调节性T细胞/辅助性T细胞17失衡的机制研究[J/OL]. 中华危重症医学杂志(电子版), 2023, 16(06): 475-480.
[3] 龚丽文, 张旭. 血尿阴性不典型泌尿道结核一例及文献复习[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(01): 60-63.
[4] 陈瑜, 尤良顺, 孟海涛, 杨敏. 嵌合抗原受体T细胞治疗多发性骨髓瘤新进展[J/OL]. 中华移植杂志(电子版), 2023, 17(05): 313-320.
[5] 曹飞, 庞俊. 前列腺癌免疫微环境中免疫抑制性细胞分类及其作用机制[J/OL]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 121-125.
[6] 陈冬丽, 邓迎丽, 毕婧. α-干扰素治疗急性呼吸道病毒感染对Th1/Th2平衡及肺功能的影响[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 590-594.
[7] 沙敏, 瞿秋霞, 朱卫东, 陈成. 肺结核与肺结节病相关肉芽肿组织中CXCR5的差异性表达[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(02): 189-194.
[8] 熊欢庆, 王惠琴, 李玉娟, 刘刚, 金发光. TSPOT.TB、Genechip、AFB及其联合应用在结核病中的诊断价值[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(01): 19-24.
[9] 赵敏廷, 张郭, 孙家明. 调节性T细胞与组织修复再生[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(01): 51-55.
[10] 陈伟杰, 何小东. 胆囊癌免疫靶向治疗进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 763-768.
[11] 张英信, 林婷, 张剑文. 构建靶向HLA-A2且表达PD-L1的CAR-Treg细胞及验证其对CD4+T细胞抑制作用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 719-728.
[12] 孙婧婷, 李娜, 罗明辉, 高瑶瑶, 白义行, 朱国贞. 短链脂肪酸对小鼠缺血再灌注肾损伤的炎症及纤维化影响和作用机制研究[J/OL]. 中华肾病研究电子杂志, 2024, 13(04): 181-187.
[13] 杨智钧, 谷佳, 丁聿贤, 张正奎, 于如同. 脑胶质瘤患者血清炎性因子水平与病理分级及预后的相关性[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(04): 238-242.
[14] 苏元波, 李其辉, 李璐, 路明, 董菲. 免疫化疗对HBsAg阴性/抗-HBc阳性T细胞非霍奇金淋巴瘤患者乙型肝炎病毒再激活的影响[J/OL]. 中华临床医师杂志(电子版), 2024, 18(01): 1-6.
[15] 杨琬芳, 许晶, 张耀方, 王青, 杨智超, 任方刚, 王宏伟. NK和NKT细胞对急性髓系白血病患者的临床影响[J/OL]. 中华临床医师杂志(电子版), 2023, 17(09): 932-938.
阅读次数
全文


摘要