切换至 "中华医学电子期刊资源库"

中华移植杂志(电子版) ›› 2022, Vol. 16 ›› Issue (06) : 329 -338. doi: 10.3877/cma.j.issn.1674-3903.2022.06.002

论著

人源化基因修饰猪-猴异种心脏移植的实验研究
任明仕1, 王明岩2, 董士勇2, 彭江3, 申华2, 刘冰2, 崔梦一3, 成楠2, 刘博罕2, 邱实2, 张涛4, 任延玲4, 魏红江5, 宋翔宇6, 杨博尧6, 王凯3, 熊兴3, 王嵘2,()   
  1. 1. 100039 北京,解放军总医院第六医学中心心血管病医学部成人心脏外科;100039 北京,解放军医学院
    2. 100039 北京,解放军总医院第六医学中心心血管病医学部成人心脏外科
    3. 100039 北京,中国人民解放军总医院第四医学中心骨科医学部骨科研究所
    4. 100039 北京,中国人民解放军军事科学院军事医学研究院实验动物中心
    5. 650201 昆明,云南农业大学动物学院
    6. 100039 北京,解放军医学院
  • 收稿日期:2022-12-12 出版日期:2022-12-25
  • 通信作者: 王嵘
  • 基金资助:
    国家重点专项研发计划(2019YFA0110704)

Experimental study of humanized genetically modified porcine-monkey heterotopic cardiac xenotransplantation

Mingshi Ren1, Mingyan Wang2, Shiyong Dong2, Jiang Peng3, Hua Shen2, Bing Liu2, Mengyi Cui3, Nan Cheng2, Bohan Liu2, Shi Qiu2, Tao Zhang4, Yanling Ren4, Hongjiang Wei5, Xiangyu Song6, Boyao Yang6, Kai Wang3, Xing Xiong3, Rong Wang2,()   

  1. 1. Division of Adult Cardiac Surgery, Department of Cardiology, the Sixth Medical Center, Chinese PLA General Hospital, Beijing 100039, China; Medical School of Chinese PLA, Beijing 100039, China
    2. Division of Adult Cardiac Surgery, Department of Cardiology, the Sixth Medical Center, Chinese PLA General Hospital, Beijing 100039, China
    3. Institute of Orthopaedics, Department of Orthopaedics, the Fourth Medical Center, Chinese PLA General Hospital, Beijing 100039, China
    4. Department of Animal Experimentation, Academy of Military Medical Sciences, Beijing 100039, China
    5. College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
    6. Medical School of Chinese PLA, Beijing 100039, China
  • Received:2022-12-12 Published:2022-12-25
  • Corresponding author: Rong Wang
引用本文:

任明仕, 王明岩, 董士勇, 彭江, 申华, 刘冰, 崔梦一, 成楠, 刘博罕, 邱实, 张涛, 任延玲, 魏红江, 宋翔宇, 杨博尧, 王凯, 熊兴, 王嵘. 人源化基因修饰猪-猴异种心脏移植的实验研究[J]. 中华移植杂志(电子版), 2022, 16(06): 329-338.

Mingshi Ren, Mingyan Wang, Shiyong Dong, Jiang Peng, Hua Shen, Bing Liu, Mengyi Cui, Nan Cheng, Bohan Liu, Shi Qiu, Tao Zhang, Yanling Ren, Hongjiang Wei, Xiangyu Song, Boyao Yang, Kai Wang, Xing Xiong, Rong Wang. Experimental study of humanized genetically modified porcine-monkey heterotopic cardiac xenotransplantation[J]. Chinese Journal of Transplantation(Electronic Edition), 2022, 16(06): 329-338.

目的

在人源化基因编辑猪-非人灵长类动物(NHPs)异种心脏腹腔异位移植实验中应用新型抗CD40单克隆抗体(anti-CD40)联合以他克莫司为主的免疫抑制方案,评价人源化基因修饰猪的基因编辑类型和免疫抑制方案的优化策略。

方法

以雄性基因编辑(GTKO/hCD39/hCD55/hTBM)小型Bama猪为供体,以雄性食蟹猴为受体,构建人源化基因修饰猪-猴异种心脏腹腔异位移植模型。围术期采用anti-CD40联合吗替麦考酚酯、他克莫司、甲泼尼龙、抗CD20单克隆抗体以及抗胸腺细胞球蛋白等组成的新型免疫抑制方案,采用体外遥感心电监测设备实时监测移植心脏电信号活动情况。主要观察指标为血流重建后移植心脏冠状动脉血流、功能、心电信号变化、心肌酶变化以及受体免疫抑制状态和存活时间;次要目标为监测受体生理指标,包括血常规、肝肾功能、血清蛋白和电解质,并依据结果调整生命支持治疗方案。终末实验后留取移植心脏标本,采用HE染色及电镜观察移植心脏病理变化。

结果

移植心脏血流重建后,器官颜色红润、质地柔软,恢复自主心律,心肌收缩有力。术后1周受体恢复良好,移植心脏冠状动脉灌注情况良好,心脏超声提示心肌收缩功能良好。受体血液学检查结果提示血清肌酸激酶及乳酸脱氢酶水平均一过性轻度升高,至术后第6天逐渐接近正常水平。术后1周受体血红蛋白、电解质和肝肾功能等指标均明显好转,一般状况好转。心脏移植后2周,心脏超声提示心肌肥厚明显。术后第20天,移植心脏心率由120~140次/分下降至50~80次/分,复查心脏超声提示吻合口血流通畅、冠状动脉灌注良好,心肌收缩乏力。考虑移植心脏功能明显减弱,终止实验后取出移植心脏,HE染色见心肌纤维增生、局部心肌细胞纤维化、间质水肿和极少量单核细胞浸润。电镜下可见心肌原纤维扭曲、肌间隙增宽,粗面内质网、线粒体和心肌肌丝结构破坏及心肌细胞线粒体囊性结构破坏。

结论

成功建立人源化基因编辑猪-NHPs的异种心脏腹腔异位移植模型,应用新型anti-CD40联合他克莫司为主的免疫抑制方案,抑制了超急性排斥反应,延缓了急性排斥反应的发生,实现异种移植器官的较长时间存活。

Objective

To evaluate the optimal strategy of gene editing type and immunosuppressive regimen by applying a novel anti-CD40 monoclonal antibody (anti-CD40) in combination with tacrolimus-based immunosuppressive regimen in a humanized genome engineering porcine-non-human primates (NHPs) allogeneic cardiac ventral allograft experiment.

Methods

The heart of a humanized genome engineering (GTKO/hCD39/hCD55/hTBM) male Bama miniature pig was transplanted into the peritoneal cavity of a male cynomolgus to establish a cardiac xenotransplantation model. During the perioperative period, a new immunosuppressive regimens consisting of domestic anti-CD40 in combination with mycophenolate mofetil, tacrolimus, methylprednisolone, anti-CD20 monoclonal antibody and anti-thymocyte globulin were administered, and the electrical activity of the transplanted heart was monitored in real-time using an extracorporeal telemetry monitoring device. The main outcomes were coronary artery blood flow and function after revascularization, electrocardiographic signal changes and myocardial enzyme changes in the transplanted heart, and immunosuppression status and survival time of the recipient. The secondary outcomes were the physiological parameters of the recipient, including routine blood tests, liver and kidney function, serum protein and electrolytes, and life support therapy based on the results. When the xenograft suffered failure of function, the cardiac xenograft was removed and sent for pathological examination using HE staining and electron microscopy.

Results

The transplanted heart showed a ruddy color and had a soft texture, autonomous heartbeat and strong myocardial contraction after revascularization. One week after transplantation, the transplanted heart had good coronary artery perfusion. The cardiac ultrasound indicated normal myocardial systolic function, and the condition of the recipient was normal. The levels of serum creatine kinase and lactic dehydrogenase in the recipient transiently increased after transplantation and decreased to normal levels at postoperative day 6. The hemoglobin, electrolytes and liver and kidney function of the recipient significantly improved at 1 week after transplantation. Cardiac ultrasound indicated significant myocardial hypertrophy of the cardiac xenograft at 2 weeks after transplantation. At 20 days after transplantation, the heartbeat of the xenograft decreased from 120-140 beats per minute to 50-80 beats per minute, the blood flow of the anastomotic site was normal, and the coronary artery was well-perfused, but the myocardium was debilitated in the systolic phase. The experiment was terminated at 20 days after transplantation because the function of the transplanted heart was significantly weakened. HE staining showed myocardial fiber hyperplasia, local myocardial fibrosis, interstitial edema and monocyte infiltration. Myofibril distortion, intermuscular space broadening, and structural damage to the rough endoplasmic reticulum, mitochondria and myocardial myofilament were observed under an electron microscope.

Conclusions

A humanized genome engineering porcine-NHPs model of intra-abdominal heterotopic cardiac xenotransplantation was successfully established. The application of a novel anti-CD40 monoclonal antibody with tacrolimus-based combination immunosuppressive regimens effectively inhibited hyperacute rejection, delayed the occurrence of acute rejection, and achieved longer survival of the xenograft organ.

图1 人源化基因修饰猪-猴异种心脏移植术后移植心脏心电遥感监测结果注:a.术后第1天无创遥感监测心电信号情况;b.移植后第20天心率检测结果;c.接收装置界面
图2 人源化基因修饰猪-猴异种心脏移植术后心脏超声检测结果注:a和b为术后第7天超声检查结果;a.吻合口和冠状动脉血流通畅;b.室间隔肥厚;c和d为术后第16天超声检查结果;c.吻合口和冠状动脉血流通畅;d.室壁和室间隔肥厚明显,心腔明显缩小
图3 人源化基因修饰猪-猴异位心脏移植受体围手术期CD40+ T细胞占B细胞数量比例情况注:a.CD40+ T细胞表达基线水平(术前1周),占B细胞数量的87.97%; b.应用anti-CD40后,术前1 d CD40+ T细胞表达水平,占B细胞数量为0;图c~f.术后第2、7、14和19天CD40+ T细胞表达水平,分别占B细胞数量0、0.21%、0和0.09%
图4 人源化基因修饰猪-猴异种心脏移植受体手术当天及术后20 d内血常规和血生化检测结果注:a.血常规;b.肝功能;c.肾功能;d.电解质;e.凝血功能;f.心肌酶
图5 人源化基因修饰猪-猴异种心脏移植受体移植后第20天移植心脏大体病理结果注:a.长箭头示心室肌显著肥厚,短箭头示左室腔缩小;b.单箭头示主动脉,双箭头示肺动脉吻合口及官腔内无血栓形成
图6 人源化基因修饰猪-猴异种心脏移植术后第20天移植心脏HE染色及电镜下观察结果注:a.光镜下见心肌细胞排列紊乱,细胞间质水肿(HE×100); b.单箭头示心肌细胞间静脉壁增厚、血管内皮增厚,双箭头示局部少量淋巴细胞浸润(HE×400); c.单箭头示心肌细胞核结构正常,双箭头示溶酶体吞噬内质网和核糖体,黑色方框示肌原纤维间水肿;d.单箭头示肌原纤维间水肿明显,肌丝Z线扭曲、断裂,双箭头示线粒体囊性变、水肿;e.单箭头示肌原纤维Z线扭曲,双箭头示肌丝断裂
1
Griffith BP, Goerlich CE, Singh AK, et al. Genetically modified porcine-to-human cardiac xenotransplantation[J]. N Engl J Med, 2022, 387(1): 35-44.
2
Savarese G, Becher PM, Lund LH, et al. Global burden of heart failure: a comprehensive and updated review of epidemiology[J]. Cardiovasc Res, 2023118(17):3272-3287.
3
Kormos RL, Cowger J, Pagani FD, et al. The society of thoracic surgeons intermacs database annual report: evolving indications, outcomes, and scientific partnerships[J]. Ann Thorac Surg, 2019, 107(2): 341-353.
4
Khush KK, Cherikh WS, Chambers DC, et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: Thirty-sixth adult heart transplantation report-2019; focus theme: Donor and recipient size match[J]. J Heart Lung Transplant, 2019, 38(10): 1056-1066.
5
Reichart B, Längin M, Denner J, et al. Pathways to clinical cardiac xenotransplantation[J]. Transplantation, 2021, 105(9): 1930-1943.
6
Längin M, Mayr T, Reichart B, et al. Consistent success in life-supporting porcine cardiac xenotransplantation[J]. Nature, 2018, 564(7736): 430-433.
7
Mohiuddin MM, Singh AK, Corcoran PC, et al. Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft[J]. Nat Commun, 2016, 7(5): 11138.
8
Shah AM, Han JJ. First successful porcine to human heart transplantation performed in the United States[J]. Artif Organs, 2022, 46(4): 543-545.
9
DiChiacchio L, Singh AK, Chan JL, et al. Intra-abdominal heterotopic cardiac xenotransplantation: pearls and pitfalls[J]. Front Cardiovasc Med, 2019, 6: 95.
10
Hisashi Y, Yamada K, Kuwaki K, et al. Rejection of cardiac xenografts transplanted from α1,3-galactosyltransferase gene-knockout (GalT-KO) pigs to baboons[J]. Am J Transplant, 2008, 8(12): 2516-2526.
11
McGregor CG, Davies WR, Oi K, et al. Cardiac xenotransplantation: recent preclinical progress with 3-month median survival[J]. J Thorac Cardiovasc Surg, 2005, 130(3): 844-851.
12
Tseng YL, Kuwaki K, Dor FJ, et al. α1,3-Galactosyltransferase gene-knockout pig heart transplantation in baboons with survival approaching 6 months[J]. Transplantation, 2005, 80(10): 1493-1500.
13
Mohiuddin MM, Corcoran PC, Singh AK, et al. B-cell depletion extends the survival of GTKO.hCD46Tg pig heart xenografts in baboons for up to 8 months[J]. Am J Transplant, 2012, 12(3): 763-771.
14
Cooper DK, Ekser B, Ramsoondar J, et al. The role of genetically engineered pigs in xenotransplantation research[J]. J Pathol, 2016, 238(2): 288-299.
15
Kemter E, Schnieke A, Fischer K, et al. Xeno-organ donor pigs with multiple genetic modifications - the more the better?[J]. Curr Opin Genet Dev, 2020, 64: 60-65.
16
Yue Y, Xu W, Kan Y, et al. Extensive germline genome engineering in pigs[J]. Nat Biomed Eng, 2021, 5(2): 134-143.
17
Cowan PJ, Robson SC. Progress towards overcoming coagulopathy and hemostatic dysfunction associated with xenotransplantation[J]. Int J Surg, 2015, 23(Pt B): 296-300.
18
Salvaris EJ, Moran CJ, Roussel JC, et al. Pig endothelial protein C receptor is functionally compatible with the human protein C pathway[J]. Xenotransplantation, 2020, 27(2): e12557.
19
Ahrens HE, Petersen B, Herrmann D, et al. siRNA mediated knockdown of tissue factor expression in pigs for xenotransplantation[J]. Am J Transplant, 2015, 15(5): 1407-1414.
20
Maeda A, Lo PC, Sakai R, et al. A strategy for suppressing macrophage-mediated rejection in xenotransplantation[J]. Transplantation, 2020, 104(4): 675-681.
21
Weiss EH, Lilienfeld BG, Müller S, et al. HLA-E/human β2-microglobulin transgenic pigs: protection against xenogeneic human anti-pig natural killer cell cytotoxicity[J]. Transplantation, 2009, 87(1): 35-43.
22
Denner J, Längin M, Reichart B, et al. Impact of porcine cytomegalovirus on long-term orthotopic cardiac xenotransplant survival[J]. Sci Rep, 2020, 10(1): 17531.
23
Hawthorne WJ, Cowan PJ, Bühler LH, et al. Third WHO global consultation on regulatory requirements for xenotransplantation clinical trials, changsha, hunan, china december 12-14, 2018: " The 2018 Changsha Communiqué" the 10-year anniversary of the international consultation on xenotransplantation[J]. Xenotransplantation, 2019, 26(2): e12513.
24
Byrne G, Ahmad-Villiers S, Du Z, et al. B4GALNT2 and xenotransplantation: a newly appreciated xenogeneic antigen[J]. Xenotransplantation, 2018, 25(5): e12394.
25
Sykes M, Sachs DH. Transplanting organs from pigs to humans[J]. Sci Immunol, 2019, 4(41): eaau6298.
26
Tanabe T, Watanabe H, Shah JA, et al. Role of intrinsic (graft) versus extrinsic (host) factors in the growth of transplanted organs following allogeneic and xenogeneic transplantation[J]. Am J Transplant, 2017, 17(7): 1778-1790.
27
Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease[J]. Cell, 2017, 169(2): 361-371.
28
Reichart B, Längin M, Radan J, et al. Pig-to-non-human primate heart transplantation: the final step toward clinical xenotransplantation?[J]. J Heart Lung Transplant, 2020, 39(8): 751-757.
29
Shu S, Ren J, Song J. Cardiac xenotransplantation: a promising way to treat advanced heart failure[J]. Heart Fail Rev, 2020, 27(1): 71-91.
30
Mohiuddin MM, Singh AK, Corcoran PC, et al. Genetically engineered pigs and target-specific immunomodulation provide significant graft survival and hope for clinical cardiac xenotransplantation[J]. J Thorac Cardiovasc Surg, 2014, 148(3): 1106-1114.
31
Mohiuddin MM, Singh AK, Corcoran PC, et al. Role of anti-CD40 antibody-mediated costimulation blockade on non-gal antibody production and heterotopic cardiac xenograft survival in a GTKO.hCD46Tg pig-to-baboon model[J]. Xenotransplantation, 2014, 21(1): 35-45.
32
Cooper DKC, Hara H, Iwase H, et al. Justification of specific genetic modifications in pigs for clinical organ xenotransplantation[J]. Xenotransplantation, 2019, 26(4): e12516.
33
Zhang X, Li X, Yang Z, et al. A review of pig liver xenotransplantation: current problems and recent progress[J]. Xenotransplantation, 2019, 26(3): e12497.
34
Deng J, Yang L, Wang Z, et al. Advance of genetically modified pigs in xenotransplantation[J]. Front Cell Dev Biol, 2022, 10(10): 1033197.
35
Zhou Q, Li T, Wang K, et al. Current status of xenotransplantation research and the strategies for preventing xenograft rejection[J]. Front Immunol, 2022, 13: 928173.
[1] 刘丹妮, 敖梦, 冉海涛, 李世玉, 秦芳. 三维超声心动图及二维斑点追踪成像对持续性心房颤动复律后双心房逆向重构的评估[J]. 中华医学超声杂志(电子版), 2023, 20(08): 827-835.
[2] 张璟璟, 赵博文, 潘美, 彭晓慧, 毛彦恺, 潘陈可, 朱玲艳, 朱琳琳, 蓝秋晔. 胎儿超声心动图测量McGoon指数在评价胎儿肺血管发育中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(08): 860-865.
[3] 吴赤球, 韦曙东, 张辉, 严许清, 梅朵卓嘎, 余丹. 驻不同海拔高度高原人员习服后心脏结构和功能变化的超声心动图评估[J]. 中华医学超声杂志(电子版), 2023, 20(06): 588-593.
[4] 谭芳, 杨娇娇, 沈玉琴, 李炎菲海, 王海蕊, 范思涵, 纪学芹. 胎儿心脏定量分析技术对正常胎儿心脏形态及收缩功能的评价[J]. 中华医学超声杂志(电子版), 2023, 20(06): 598-604.
[5] 罗刚, 泮思林, 陈涛涛, 许茜, 纪志娴, 王思宝, 孙玲玉. 超声心动图在胎儿心脏介入治疗室间隔完整的肺动脉闭锁中的应用[J]. 中华医学超声杂志(电子版), 2023, 20(06): 605-609.
[6] 吴群, 张鑫, 李培, 王芳韵, 郑淋, 卫海燕, 马宁. 孤立型主动脉缩窄的超声心动图诊断及术后随访研究[J]. 中华医学超声杂志(电子版), 2023, 20(06): 642-646.
[7] 王月丽, 宋砾, 牛宝荣, 陈炎, 张楠, 何怡华. 心脏血管肉瘤的临床及超声心动图特征[J]. 中华医学超声杂志(电子版), 2023, 20(04): 398-403.
[8] 何俊, 马小静, 夏娟, 何亚峰, 谢姝瑞. 原发性非黏液性心脏肿瘤的超声心动图表现及临床特点分析[J]. 中华医学超声杂志(电子版), 2023, 20(04): 411-416.
[9] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[10] 王玲燕, 邹磊, 洪亮, 宋三兵, 付润, 熊胜男, 宋晓春. 心脏外科术后患者并发低三碘甲状腺原氨酸综合征的影响因素分析[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 399-402.
[11] 杨莹, 刘艳, 王央丹. 新生儿结节性硬化症相关性癫痫1例并文献复习[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 464-472.
[12] 吴建永. 单中心2 000例心脏死亡器官捐献肾移植发展与创新[J]. 中华移植杂志(电子版), 2023, 17(04): 0-.
[13] 张妍, 吕强, 韩笑, 王旭, 刘冉, 张利, 陈香美. 挤压综合征大鼠核心脏器肾心肺损伤特点研究[J]. 中华肾病研究电子杂志, 2023, 12(05): 248-253.
[14] 刘笑笑, 张小杉, 刘群, 马岚, 段莎莎, 施依璐, 张敏洁, 王雅晳. 中国学龄前儿童先天性心脏病流行病学研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1021-1024.
[15] 张生怀. 急性心肌梗死致心源性猝死救治分析一例[J]. 中华临床医师杂志(电子版), 2023, 17(08): 924-926.
阅读次数
全文


摘要