切换至 "中华医学电子期刊资源库"

中华移植杂志(电子版) ›› 2023, Vol. 17 ›› Issue (03) : 152 -157. doi: 10.3877/cma.j.issn.1674-3903.2023.03.005

论著

异种红细胞联合膜式氧合灌注装置对人断肢离体机械灌注效果观察
杨博尧, 陈胜峰, 崔梦一, 贾志博, 宋翔宇, 王恺, 陈蕾佳, 彭熙为, 刘亚荣, 梁西孝, 许文静, 许猛, 彭江()   
  1. 100853 北京,解放军医学院;100048 北京,解放军总医院第四医学中心骨科医学部研究所 北京市骨科再生医学重点实验室 中国人民解放军骨科战创伤重点实验室
    100048 北京,解放军总医院第四医学中心骨科医学部研究所 北京市骨科再生医学重点实验室 中国人民解放军骨科战创伤重点实验室
    100048 北京,解放军总医院第四医学中心骨科医学部骨科
  • 收稿日期:2022-10-30 出版日期:2023-06-25
  • 通信作者: 彭江
  • 基金资助:
    国家重点研发计划(2019YFA0110704); 军队后勤科研重点项目(BHJ20J002)

Effect of xenogeneic red blood cell combined with membrane oxygenator on external machine perfusion of human amputated limb

Boyao Yang, Shengfeng Chen, Mengyi Cui, Zhibo Jia, Xiangyu Song, Kai Wang, Leijia Chen, Xiwei Peng, Yarong Liu, Xixiao Liang, Wenjing Xu, Meng Xu, Jiang Peng()   

  1. Medical School of Chinese PLA, Beijing 100853, China; Institute of Orthopedics, the Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing 100048, China
    Institute of Orthopedics, the Fourth Medical Center of Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Beijing 100048, China
    Department of Orthopedics, the Fourth Medical Center, Chinese PLA General Hospital, Beijing 100048, China
  • Received:2022-10-30 Published:2023-06-25
  • Corresponding author: Jiang Peng
引用本文:

杨博尧, 陈胜峰, 崔梦一, 贾志博, 宋翔宇, 王恺, 陈蕾佳, 彭熙为, 刘亚荣, 梁西孝, 许文静, 许猛, 彭江. 异种红细胞联合膜式氧合灌注装置对人断肢离体机械灌注效果观察[J]. 中华移植杂志(电子版), 2023, 17(03): 152-157.

Boyao Yang, Shengfeng Chen, Mengyi Cui, Zhibo Jia, Xiangyu Song, Kai Wang, Leijia Chen, Xiwei Peng, Yarong Liu, Xixiao Liang, Wenjing Xu, Meng Xu, Jiang Peng. Effect of xenogeneic red blood cell combined with membrane oxygenator on external machine perfusion of human amputated limb[J]. Chinese Journal of Transplantation(Electronic Edition), 2023, 17(03): 152-157.

目的

探究使用异种洗涤红细胞灌注液对人断肢进行离体机械灌注保存的实验流程及可能性。

方法

收集来源于左下肢恶性肿瘤截肢患者断肢,肢体离断后置于4 ℃保温箱中转运至实验室。对断肢进行预处理,并将腘静脉、腘动脉插管后连接灌注系统,使用4 ℃肝素等渗NaCl溶液对断肢进行灌洗,直至从静脉端流出澄清的等渗NaCl溶液。膜式氧合灌注系统包括:膜式氧合器、蠕动泵、制氧机、储液装置和监护仪。灌注过程中对灌注液电解质和细胞损伤标记物进行监测,同时进行血常规和断肢末端经皮动脉血氧饱和度(SpO2)检查;灌注结束后通过苏木精-伊红(HE)染色法进行组织学评价。

结果

断肢热缺血和冷缺血时间分别为138和65 min。灌注开始后,断肢颜色恢复红润,远端表浅静脉充盈。灌注开始后前6 h断肢末端SpO2维持在98%~100%,最终因断肢末端SpO2下降,灌注终止,灌注时长7 h。灌注开始时白细胞和血小板均处于较低水平,白细胞在灌注开始后有较明显的下降,在3 h后出现上升,最终与灌注开始时数值接近;灌注开始后前4 h内血小板水平较为平稳,4 h后出现较大幅度的上升;灌注过程中红细胞和血红蛋白均呈波动趋势。灌注开始后前6 h内K浓度较为稳定,之后有较大幅度上升;Na浓度在整个灌注期间基本维持在生理状态;乳酸脱氢酶和肌酸激酶均呈上升趋势。HE染色示断肢肌肉细胞在灌注过程中体积逐渐恢复后又持续变小,肌间血管可见血栓形成。

结论

初步验证利用基于异种红细胞对人断肢进行离体机械灌注的可行性,但其保存效果是否达到或接近生理状态并能维持功能,以及免疫排斥反应的程度仍需进一步论证。

Objective

To explore the experimental process and possibility of using external machine perfusion system based on xenogeneic washed red blood cell perfusate to preserve human amputated limb.

Methods

The amputated limb was collected from patients with left lower limb malignant tumor amputation, and the amputated limb was placed in an incubator at 4 ℃ and transported to the laboratory. The amputated limb was pretreated, and the popliteal vein and popliteal artery were intubated and connected to the perfusion system. The amputated limb was lavaged with heparin isotonic NaCl solution at 4 ℃ until the clarified isotonic NaCl solution flowed from the venous end. The membrane oxygenator perfusion system included membrane oxygenator, peristaltic pump, oxygen generator, liquid reservoir and monitor. The perfusion electrolyte and cell damage markers were monitored during perfusion, and the blood routine and percutaneous arterial oxygen saturation (SpO2) of end limb were examined during perfusion, and histological evaluation was performed by hematoxylin-eosin (HE) staining after perfusion.

Results

The time of warm and cold ischemia were 138 min and 65 min, respectively. After the beginning of perfusion, the amputated limb returned to ruddy color, and the distal superficial veins were filled. The SpO2 of end limb remained at 98%-100% lasting 6 h, and finally the perfusion was terminated due to the decrease of SpO2, which lasted 7 h. The levels of white blood cells and platelets were low at the beginning of perfusion. The white blood cells decreased significantly after the beginning of perfusion, and increased 3 h later, finally approaching the value at the beginning of perfusion. The platelet level was stable within 4 h, and increased significantly after 4 h. During the perfusion, both red blood cells and hemoglobin showed fluctuation trend. K+ concentration was stable within 6 h, and then increased significantly. Na+ concentration remained in physiological state during the whole perfusion period. Both lactate dehydrogenase and creatine kinase were on the rise. HE staining showed that the muscle cells of the amputated limb gradually recovered in volume during perfusion and then continued to shrink, and thrombi were observed in the intermuscular vessels.

Conclusions

The feasibility of external machine perfusion based on xenogeneic red blood cells to the amputated limb was preliminarily verified. However, whether the preservation effect reached or was close to the physiological state and the function could be maintained, as well as the degree of immune rejection still need to be further demonstrated.

表1 灌注液组成及各组分作用[15,16]
图1 人断肢离体机械灌注过程中断肢末端SpO2变化注:SpO2.经皮动脉血氧饱和度
图2 人断肢离体机械灌注期间灌注液血常规主要指标变化情况
图3 人断肢离体机械灌注期间灌注液电解质、乳酸脱氢酶和肌酸肌酶变化情况
图4 人断肢离体机械灌注不同时间段腓肠肌HE染色(200×)注:HE.苏木精-伊红;a~d分别代表灌注前、灌注2 h(箭头示血液流过)、灌注4 h及灌注终末(箭头示肌间血管血栓)
1
Ziegler-Graham K, MacKenzie EJ, Ephraim PL, et al. Estimating the prevalence of limb loss in the United States: 2005 to 2050[J]. Arch Phys Med Rehabil, 2008, 89(3):422-429.
2
Shores JT, Brandacher G, Lee WPA. Hand and upper extremity transplantation: an update of outcomes in the worldwide experience[J]. Plast Reconstr Surg, 2015, 135(2):351e-360e.
3
Wu MY, Yiang GT, Liao WT, et al. Current mechanistic concepts in ischemia and reperfusion injury[J]. Cell Physiol Biochem, 2018, 46(4):1650-1667.
4
Eltzschig HK, Eckle T. Ischemia and reperfusion-from mechanism to translation[J]. Nat Med, 2011, 17(11):1391-1401.
5
Mi L, Zhang Y, Xu Y, et al. HMGB1/RAGE pro-inflammatory axis promotes vascular endothelial cell apoptosis in limb ischemia/reperfusion injury[J]. Biomed Pharmacother, 2019, 116:109005.
6
Lanzetta M, Petruzzo P, Dubernard JM, et al. Second report (1998-2006) of the International Registry of Hand and Composite Tissue Transplantation[J]. Transpl Immunol, 2007, 18(1):1-6.
7
Hosgood SA, Nicholson HF, Nicholson ML. Oxygenated kidney preservation techniques[J]. Transplantation, 2012, 93(5):455-459.
8
Messner F, Grahammer J, Hautz T, et al. Ischemia/reperfusion injury in vascularized tissue allotransplantation: tissue damage and clinical relevance[J]. Curr Opin Organ Transplant, 2016, 21(5):503-509.
9
Müller S, Constantinescu MA, Kiermeir DM, et al. Ischemia/reperfusion injury of porcine limbs after extracorporeal perfusion[J]. J Surg Res, 2013, 181(1):170-182.
10
Jia J, Nie Y, Li J, et al. A systematic review and meta-analysis of machine perfusion vs. static cold storage of liver allografts on liver transplantation outcomes: the future direction of graft preservation[J]. Front Med (Lausanne), 2020, 7:135.
11
Patel K, Nath J, Hodson J, et al. Outcomes of donation after circulatory death kidneys undergoing hypothermic machine perfusion following static cold storage: a UK population-based cohort study[J]. Am J Transplant, 2018, 18(6):1408-1414.
12
Krezdorn N, Macleod F, Tasigiorgos S, et al. Twenty-four-hour ex vivo perfusion with acellular solution enables successful replantation of porcine forelimbs[J]. Plast Reconstr Surg, 2019, 144(4): 608e-618e.
13
Cooper DK. Porcine red blood cells as a source of blood transfusion in humans[J]. Xenotransplantation, 2003, 10(5): 384-386.
14
Fishman JA, Patience C. Xenotransplantation: infectious risk revisited[J]. Am J Transplant, 2004, 4(9): 1383-1390.
15
Werner N, Alghanem F, Rakestraw S, et al. Ex Situ perfusion of human limb allografts for 24 hours[J]. Transplantation, 2017, 101 (3): e68-e74.
16
Amin K, Stone J, Kerr J, et al. Randomized preclinical study of machine perfusion in vascularized composite allografts[J] Br J Surg, 2021, 108 (5):574-582.
17
Bravo D, Rigley TH, Gibran N, et al. Effect of storage and preservation methods on viability in transplantable human skin allografts[J]. Burns, 2000, 26(4): 367-378.
18
Castagnoli C, Alotto D, Cambieri I, et al. Evaluation of donor skin viability: fresh and cryopreserved skin using tetrazolioum salt assay[J]. Burns, 2003, 29(8): 759-767.
19
Gok E, Kubiak CA, Guy E, et al. Effect of static cold storage on skeletal muscle after vascularized composite tissue allotransplantation[J]. J Reconstr Microsurg, 2020, 36(1):9-15.
20
Haug V, Kollar B, Endo Y, et al. Comparison of acellular solutions for ex-situ perfusion of amputated limbs[J]. Mil Med, 2020, 185(11-12):e2004-e2012.
21
Jayaraman S, Chalabi Z, Perel P, et al. The risk of transfusion-transmitted infections in sub-Saharan Africa[J]. Transfusion, 2010, 50(2): 433-442.
22
Ng MSY, David M, Middelburg RA, et al. Transfusion of packed red blood cells at the end of shelf life is associated with increased risk of mortality - a pooled patient data analysis of 16 observational trials[J]. Haematologica, 2018, 103(9):1542-1548.
23
Cooper DKC. Genetically engineered pig kidney transplantation in a brain-dead human subject[J]. Xenotransplantation, 2021, 28(6):e12718.
24
Porrett PM, Orandi BJ, Kumar V, et al. First clinical-grade porcine kidney xenotransplant using a human decedent model[J]. Am J Transplant, 2022, 22(4):1037-1053.
25
Smood B, Hara H, Schoel LJ, et al. Genetically-engineered pigs as sources for clinical red blood cell transfusion: What pathobiological barriers need to be overcome?[J]. Blood Rev, 2019, 35: 7-17.
26
Eshmuminov D, Becker D, Bautista Borrego L, et al. An integrated perfusion machine preserves injured human livers for 1 week[J]. Nat Biotechnol, 2020, 38(2): 189-198.
27
Karangwa SA, Dutkowski P, Fontes P, et al. Machine perfusion of donor livers for transplantation: a proposal for standardized nomenclature and reporting guidelines[J]. Am J Transplant, 2016, 16(10):2932-2942.
28
Said SA, Ordeñana CX, Rezaei M, et al. Ex-vivo normothermic limb perfusion with a hemoglobin-based oxygen carrier perfusate[J]. Mil Med, 2020, 185(Suppl 1):110-120.
[1] 谢迎东, 孙帼, 徐超丽, 杨斌, 孙晖, 戴云. 超声造影定量评价不同生存期移植肾血流灌注的临床价值[J]. 中华医学超声杂志(电子版), 2023, 20(07): 749-754.
[2] 罗旺林, 杨传军, 许国星, 俞建国, 孙伟东, 颜文娟, 冯志. 开放性楔形胫骨高位截骨术不同植入材料的Meta分析[J]. 中华关节外科杂志(电子版), 2023, 17(06): 818-826.
[3] 刘林峰, 王增涛, 王云鹏, 钟硕, 郝丽文, 仇申强, 陈超. 足底内侧皮瓣联合甲骨皮瓣在手指V度缺损再造中的临床应用[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 480-484.
[4] 陈永沛, 仲海燕, 陈勇, 王慜, 王倩, 邹鸣立, 袁斯明. 数字减影血管造影在腓动脉穿支皮瓣移植中的应用[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 507-510.
[5] 韩李念, 王君. 放射性皮肤损伤治疗的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 533-537.
[6] 刘竹影, 周年苟, 李泳祺, 周丽斌. 空心环钻联合手术导板用于自体牙移植牙槽窝备洞[J]. 中华口腔医学研究杂志(电子版), 2023, 17(06): 418-423.
[7] 中华医学会器官移植学分会, 中国医师协会器官移植医师分会, 上海医药行业协会. 中国肝、肾移植受者霉酚酸类药物应用专家共识(2023版)[J]. 中华移植杂志(电子版), 2023, 17(05): 257-272.
[8] 江文诗, 何湘湘. 全球及我国器官捐献发展特征分析与学科建设[J]. 中华移植杂志(电子版), 2023, 17(05): 280-286.
[9] 严庆, 刘颖, 邓斐文, 陈焕伟. 微血管侵犯对肝癌肝移植患者生存预后的影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 624-629.
[10] 廖梅, 张红君, 金洁玚, 吕艳, 任杰. 床旁超声造影对肝移植术后早期肝动脉血栓的诊断价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 630-634.
[11] 李秉林, 吕少诚, 潘飞, 姜涛, 樊华, 寇建涛, 贺强, 郎韧. 供肝灌注液病原菌与肝移植术后早期感染的相关性分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 656-660.
[12] 吕垒, 冯啸, 何凯明, 曾凯宁, 杨卿, 吕海金, 易慧敏, 易述红, 杨扬, 傅斌生. 改良金氏评分在儿童肝豆状核变性急性肝衰竭肝移植手术时机评估中价值并文献复习[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 661-668.
[13] 何吉鑫, 杨燕妮, 王继伟, 李建国, 谢铭. 肠道菌群及肠道代谢产物参与慢性便秘发生机制的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 495-499.
[14] 郭晓磊, 李晓云, 孙嘉怿, 金乐, 郭亚娟, 史新立. 含生长因子骨移植材料的研究进展和监管现状[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 373-378.
[15] 王丁然, 迟洪滨. 自身免疫甲状腺炎对子宫内膜异位症患者胚胎移植结局的影响[J]. 中华临床医师杂志(电子版), 2023, 17(06): 682-688.
阅读次数
全文


摘要