1 |
Rio-Machin A, Vulliamy T, Hug N, et al. The complex genetic landscape of familial MDS and AML reveals pathogenic germline variants[J]. Nat Commun, 2020, 11(1): 1044.
|
2 |
Adamo A, Chin P, Keane P, et al. Identification and interrogation of the gene regulatory network of CEBPA-double mutant acute myeloid leukemia[J]. Leukemia, 2023, 37(1):102-112.
|
3 |
Taube F, Georgi JA, Kramer M, et al. CEBPA mutations in 4708 patients with acute myeloid leukemia: differential impact of bZIP and TAD mutations on outcome[J]. Blood, 2022, 139(1): 87-103.
|
4 |
Kim HS, Han E, Jang W, et al. Germline CEBPA mutations in Korean patients with acute myeloid leukemia[J]. Leuk Res,2019,76:84-86.
|
5 |
Boada M, Catalán AI, Ottati C, et al. Germline CEBPA mutation in familial acute myeloid leukemia[J]. Hematol Rep, 2021, 13(3):9114.
|
6 |
Yokota A, Huo L, Lan F, et al. The clinical, molecular, and mechanistic basis of RUNX1 mutations identified in hematological malignancies[J]. Mol Cells, 2020, 43(2): 145-152.
|
7 |
DiFilippo EC, Coltro G, Carr RM, et al. Spectrum of abnormalities and clonal transformation in germline RUNX1 familial platelet disorder and a genomic comparative analysis with somatic RUNX1 mutations in MDS/MPN overlap neoplasms[J]. Leukemia, 2020, 34(9): 2519-2524.
|
8 |
Daver N, Schlenk RF, Russell NH, et al. Targeting FLT3 mutations in AML: review of current knowledge and evidence[J]. Leukemia,2019, 33(2): 299-312.
|
9 |
Scholl S, Fleischmann M, Schnetzke U, et al. Molecular mechanisms of resistance to FLT3 inhibitors in acute myeloid leukemia: ongoing challenges and future treatments [J]. Cells,2020, 9(11): 2493.
|
10 |
Sanchez-Martin M, Ferrando A. The NOTCH1-MYC highway toward T-cell acute lymphoblastic leukemia[J]. Blood, 2017, 129(9):1124-1133.
|
11 |
Jelloul FZ, Yang R, Garces S, et al. Landscape of NOTCH1 mutationsand co-occurringbiomarkeralterations inchronic lymphocytic leukemia[J]. Leuk Res, 2022, 116:106827.
|
12 |
Zhang XH, Chen J, Han MZ, et al. The consensus from the Chinese Society of Hematology on indications, conditioning regimens and donor selection for allogeneic hematopoietic stem cell transplantation:2021 update[J]. J Hematol Oncol, 2021, 14(1): 145.
|
13 |
Toya T, Harada H, Harada Y, et al. Adult-onset hereditary myeloid malignancy and allogeneic stem cell transplantation[J]. Front Oncol,2022, 12:997530.
|
14 |
Ng CWS, Kosmo B, Lee PL, et al. CEBPA mutational analysis in acute myeloid leukaemia by a laboratory-developed next-generation sequencing assay[J]. J Clin Pathol, 2018, 71(6): 522-531.
|
15 |
Bullinger L. CEBPA mutations in AML: site matters[J]. Blood,2022, 139(1): 6-7.
|
16 |
Pabst T, Eyholzer M, Haefliger S, et al. Somatic CEBPA mutations are a frequent second event in families with germline CEBPA mutations and familial acute myeloid leukemia[J]. J Clin Oncol,2008, 26(31): 5088-5093.
|
17 |
Brown AL, Hahn CN, Scott HS. Secondary leukemia in patients with germline transcription factor mutations (RUNX1, GATA2, CEBPA)[J].Blood, 2020, 136(1): 24-35.
|
18 |
Lyman SD, Brasel K, Rousseau AM, et al. The flt3 ligand: a hematopoietic stem cell factor whose activities are distinct from steel factor[J]. Stem Cells, 1994, 12 (Suppl 1): S99-S107; discussion 8-10.
|
19 |
Singh N, Morlote D, Vnencak-Jones C, et al. Acute myeloid leukemia case harboring unusual FLT3 variant: somatic vs germline?[J]. Lab Med, 2021, 52(3): e53-e56.
|
20 |
Xiao H, Shi J, Luo Y, et al. First report of multiple CEBPA mutations contributing to donor origin of leukemia relapse after allogeneic hematopoietic stem cell transplantation[J]. Blood, 2011,117(19): 5257-5260.
|
21 |
Schlegelberger B, Heller PG. RUNX1 deficiency (familial platelet disorder with predisposition to myeloid leukemia, FPDMM) [J].Semin Hematol, 2017, 54(2): 75-80.
|
22 |
Antony-Debré I, Manchev VT, Balayn N, et al. Level of RUNX1 activity is criticalfor leukemicpredisposition but notfor thrombocytopenia[J]. Blood, 2015, 125(6): 930-940.
|
23 |
Michaud J, Wu F, Osato M, et al. In vitro analyses of known and novel RUNX1/AML1 mutations in dominant familial platelet disorder with predisposition to acute myelogenous leukemia: implications for mechanisms of pathogenesis[J]. Blood, 2002, 99(4): 1364-1372.
|
24 |
张然然, 陈晓娟, 任媛媛, 等. 家族性血小板疾病并急性髓系白血病倾向一例报告并文献复习[J]. 中华血液学杂志, 2021,42(4): 308-312.
|
25 |
Antony-Debré I, Duployez N, Bucci M, et al. Somatic mutations associated with leukemic progression of familial platelet disorder with predisposition to acute myeloid leukemia[J]. Leukemia, 2016, 30(4): 999-1002.
|
26 |
Yoshimi A, Toya T, Kawazu M, et al. Recurrent CDC25C mutations drive malignant transformation in FPD/AML[J]. Nat Commun,2014, 5:4770.
|
27 |
Lachowiez C, Bannon S, Loghavi S, et al. Clonal evolution and treatment outcomes in hematopoietic neoplasms arising in patients with germline RUNX1 mutations[J]. Am J Hematol, 2020, 95(11):E313-E315.
|
28 |
Nickels EM, Soodalter J, Churpek JE, et al. Recognizing familial myeloid leukemia in adults[J]. Ther Adv Hematol, 2013, 4(4):254-269.
|
29 |
Churpek JE, Pyrtel K, Kanchi KL, et al. Genomic analysis of germ line and somatic variants in familial myelodysplasia/acute myeloid leukemia[J]. Blood, 2015, 126(22): 2484-2490.
|
30 |
Makishima H, Jankowska AM, McDevitt MA, et al. CBL, CBLB,TET2, ASXL1, and IDH1/2 mutations and additional chromosomal aberrations constitute molecular events in chronic myelogenous leukemia[J]. Blood, 2011, 117(21): e198-e206.
|
31 |
孙超, 张苏江, 李建勇. 异柠檬酸脱氢酶(IDH)基因突变与急性髓系白血病关系的研究进展[J]. 中华血液学杂志, 2013,34(3)273-275.
|
32 |
Green A, Beer P. Somatic mutations of IDH1 and IDH2 in the leukemic transformation of myeloproliferative neoplasms[J]. N Engl J Med, 2010, 362(4): 369-370.
|
33 |
Yin X, Zhou M, Zhang L, et al. Histone chaperone ASF1A accelerates chronic myeloid leukemia blast crisis by activating Notch signaling[J]. Cell Death Dis, 2022, 13(10): 842.
|
34 |
Herranz D, Ambesi-Impiombato A, Palomero T, et al. A NOTCH1-driven MYC enhancer promotes T cell development, transformation and acute lymphoblastic leukemia[J]. Nat Med, 2014, 20(10):1130-1137.
|
35 |
Dirse V, Norvilas R, Gineikiene E, et al. ETV6 and NOTCH1 germline variants in adult acute leukemia[J]. Leuk Lymphoma,2018, 59(4): 1022-1024.
|
36 |
Kongkiatkamon S, Niparuck P, Rattanathammethee T, et al.Prevalence and clinical outcomes of germline variants among patients with myeloid neoplasms [J]. J Clin Pathol, 2024, jcp-2023-209264. [Online ahead of print]
|
37 |
Yu K, Deuitch N, Merguerian M, et al. Genomic landscape of patients with germline RUNX1 variants and familial platelet disorder with myeloid malignancy[J]. Blood Adv, 2024, 8(2):497-511.
|
38 |
Forster A, Decker M, Schlegelberger B, et al. Beyond pathogenic RUNX1 germline variants: the spectrum of somatic alterations in RUNX1-familial platelet disorder with predisposition to hematologic malignancies[J]. Cancers (Basel), 2022, 14(14):3431.
|
39 |
Lahtinen AK, Koski J, Ritari J, et al. Clinically relevant germline variants in allogeneic hematopoietic stem cell transplant recipients[J]. Bone Marrow Transplant, 2023, 58(1):39-45.
|
40 |
Williams LS, Williams KM, Gillis N, et al. Donor-derived malignancy and transplantation morbidity: risks of patient and donor genetics in allogeneic hematopoietic stem cell transplantation[J].Transplant Cell Ther, 2024, 30(3):255-267.
|
41 |
Auer PL, Farazi M, Zhang T, et al. Donor germ-line variants associate with outcomes of allogeneic hematopoietic stem cell transplantation in patients with myelodysplastic syndromes[J]. Am J Hematol, 2024, 99(4):770-773.
|
42 |
Crysandt M, Brings K, Beier F, et al. Germ line predisposition to myeloid malignancies appearing in adulthood [ J]. Expert Rev Hematol, 2018, 11(8):625-636.
|