1 |
Chinen J, Buckley RH. Transplantation immunology: solid organ and bone marrow[J]. J Allergy Clin Immunol, 2010, 125(Suppl 2): S324-S335.
|
2 |
Schauerte C, Hubner A, Rong S, et al. Antagonism of profibrotic microRNA-21 improves outcome of murine chronic renal allograft dysfunction[J]. Kidney Int, 2017, 92(3): 646-656.
|
3 |
Solez K, Colvin RB, Racusen LC, et al. Banff ′05 Meeting Report: differential diagnosis of chronic allograft injury and elimination of chronic allograft nephropathy ('CAN')[J]. Am J Transplant, 2007, 7(3): 518-526.
|
4 |
Cassidy H, Slyne J, O′Kelly P, et al. Urinary biomarkers of chronic allograft nephropathy[J]. Proteomics Clin Appl, 2015, 9(5-6): 574-585.
|
5 |
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478): eaau6977.
|
6 |
Jing H, Tang S, Lin S, et al. The role of extracellular vesicles in renal fibrosis[J]. Cell Death Dis, 2019, 10(5): 367.
|
7 |
He X, Yang Y, Zhi F, et al. δ-Opioid receptor activation modified microRNA expression in the rat kidney under prolonged hypoxia[J]. PLoS One, 2013, 8(4): e61080.
|
8 |
Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate[J]. Ann Intern Med, 2009, 150(9): 604-612.
|
9 |
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods, 2001, 25(4): 402-408.
|
10 |
Zununi Vahed S, Ardalan M, Samadi N, et al. Pharmacogenetics and drug-induced nephrotoxicity in renal transplant recipients[J]. Bioimpacts, 2015, 5(1): 45-54.
|
11 |
Zununi Vahed S, Poursadegh Zonouzi A, Mahmoodpoor F, et al. Circulating miR-150, miR-192, miR-200b, and miR-423-3p as non-invasive biomarkers of chronic allograft dysfunction[J]. Arch Med Res, 2017, 48(1): 96-104.
|
12 |
Seron D. Early diagnosis of chronic allograft nephropathy by means of protocol biopsies[J]. Transplant Proc, 2004, 36(3): 763-764.
|
13 |
Shishido S, Asanuma H, Nakai H, et al. The impact of repeated subclinical acute rejection on the progression of chronic allograft nephropathy[J]. J Am Soc Nephrol, 2003, 14(4): 1046-1052.
|
14 |
Johnston O, Cassidy H, O′Connell S, et al. Identification of beta2-microglobulin as a urinary biomarker for chronic allograft nephropathy using proteomic methods[J]. Proteomics Clin Appl, 2011, 5(7-8): 422-431.
|
15 |
Paul LC. Chronic allograft nephropathy: an update[J]. Kidney Int, 1999, 56(3): 783-793.
|
16 |
Nankivell BJ, Borrows RJ, Fung CL, et al. The natural history of chronic allograft nephropathy[J]. N Engl J Med, 2003, 349(24): 2326-2333.
|
17 |
Valadi H, Ekstrom K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells[J]. Nat Cell Biol, 2007, 9(6): 654-659.
|
18 |
Lin SY, Chang CH, Wu HC, et al. Proteome profiling of urinary exosomes identifies alpha 1-antitrypsin and H2B1K as diagnostic and prognostic biomarkers for urothelial carcinoma[J]. Sci Rep, 2016, 6: 34446.
|
19 |
Scian MJ, Maluf DG, David KG, et al. MicroRNA profiles in allograft tissues and paired urines associate with chronic allograft dysfunction with IF/TA[J]. Am J Transplant, 2011, 11(10): 2110-2122.
|
20 |
Maluf DG, Dumur CI, Suh JL, et al. The urine microRNA profile may help monitor post-transplant renal graft function[J]. Kidney Int, 2014, 85(2): 439-449.
|
21 |
Saejong S, Townamchai N, Somparn P, et al. MicroRNA-21 in plasma exosome, but not from whole plasma, as a biomarker for the severe interstitial fibrosis and tubular atrophy (IF/TA) in post-renal transplantation[J]. Asian Pac J Allergy Immunol, 2020. [Online ahead of print]
|
22 |
Pan T, Jia P, Chen N, et al. Delayed remote ischemic preconditioning confersrenoprotection against septic acute kidney injury via exosomal miR-21[J]. Theranostics, 2019, 9(2): 405.
|
23 |
Lange T, Artelt N, Kindt F, et al. MiR-21 is up-regulated in urinary exosomes of chronic kidney disease patients and after glomerular injury[J]. J Cell Mol Med, 2019, 23(7): 4839-4843.
|
24 |
Lv CY, Ding WJ, Wang YL, et al. A PEG-based method for the isolation of urinary exosomes and its application in renal fibrosis diagnostics using cargo miR-29c and miR-21 analysis[J]. Int Urol Nephrol, 2018, 50(5): 973-982.
|
25 |
Zang J, Maxwell AP, Simpson DA, et al. Differential expression of urinary exosomal MicroRNAs miR-21-5p and miR-30b-5p in individuals with diabetic kidney disease[J]. Sci Rep, 2019, 9(1): 10900.
|
26 |
Wang X, Wang T, Chen C, et al. Serum exosomal miR-210 as a potential biomarker for clear cell renal cell carcinoma[J]. J Cell Biochem, 2019, 120(2): 1492-1502.
|
27 |
Chen Y, Gao C, Sun Q, et al. MicroRNA-4639 is a regulator of DJ-1 expression and a potential early diagnostic marker for Parkinson′s disease[J]. Front Aging Neurosci, 2017, 9: 232.
|
28 |
Van Balkom BW, Pisitkun T, Verhaar MC, et al. Exosomes and the kidney: prospects for diagnosis and therapy of renal diseases[J]. Kidney Int, 2011, 80(11): 1138-1145.
|
29 |
Pisitkun T, Shen R-F, Knepper MA. Identification and proteomic profiling of exosomes in human urine[J]. Proc Natl Acad Sci U S A, 2004, 101(36): 13368-13373.
|
30 |
Cheng L, Sun X, Scicluna BJ, et al. Characterization and deep sequencing analysis of exosomal and non-exosomal miRNA in human urine[J]. Kidney Int, 2014, 86(2): 433-444.
|
31 |
Williams Z, Ben-Dov IZ, Elias R, et al. Comprehensive profiling of circulating microRNA via small RNA sequencing of cDNA libraries reveals biomarker potential and limitations[J]. Proc Natl Acad Sci U S A, 2013, 110(11): 4255-4260.
|
32 |
Yang Q, Lu J, Wang S, et al. Application of next-generation sequencing technology to profile the circulating microRNAs in the serum of preeclampsia versus normal pregnant women[J]. Clinica Chimica Acta, 2011, 412(23-24): 2167-2173.
|
33 |
Naskalski J, Celiński A. Determining of actual activities of acid and alkaline ribonuclease in human serum and urine[J]. Mater Med Pol, 1991,23(2): 107-110.
|