1 |
卢先明,张水军. 肝脏巨噬细胞极化在肝脏缺血再灌注损伤中的作用及机制研究进展[J]. 河南医学研究,2019, 28(11): 2109-2111.
|
2 |
Dar WA, Sullivan E, Bynon JS, et al. Ischaemia reperfusion injury in liver transplantation: cellular and molecular mechanisms[J]. Liver Int, 2019, 39(5): 788-801.
|
3 |
Eltzschig HK, Eckle T. Ischemia and reperfusion-from mechanism to translation[J]. Nat Med, 2011, 17(11): 1391-1401.
|
4 |
Jaeschke H, Woolbright BL. Current strategies to minimize hepatic ischemia-reperfusion injury by targeting reactive oxygen species[J]. Transplant Rev (Orlando), 2012, 26(2): 103-114.
|
5 |
Go KL, Sooyeon L, Ivan Z, et al. Mitochondrial dysfunction and autophagy in hepatic ischemia/reperfusion injury[J]. Biomed Res Int, 2015: 183469.
|
6 |
Cursio R, Colosetti P, Gugenheim J. Autophagy and liver ischemia-reperfusion injury[J]. Biomed Res Int, 2015: 417590.
|
7 |
Brand MD. The sites and topology of mitochondrial superoxide production[J]. Exp Gerontol, 2010, 45(7-8): 466-472.
|
8 |
Hanukoglu I, Dar WA, Sullivan E, et al. Ischaemia reperfusion injury in liver transplantation: Cellular and molecular mechanisms[J]. Liver Int, 2019, 39(5): 788-801.
|
9 |
Cheung EC, De-Nicola GM, Nixon C, et al. Dynamic ROS control by TIGAR regulates the initiation and progression of pancreatic cancer[J]. Cancer cell, 2020, 37(2): 168-182.
|
10 |
Bagati A, Moparthy S, Fink EE, et al. KLF9-dependent ROS regulate melanoma progression in stage-specific manner[J]. Oncogene, 2019, 38(19): 3585-3597.
|
11 |
González-Flecha B, Cutrin JC, Boveris A. Time course and mechanism of oxidative stress and tissue damage in rat liver subjected to in vivo ischemia-reperfusion[J]. J Clin Invest, 1993, 91(2): 456-464.
|
12 |
Adkison D, Höllwarth ME, Benoit JN, et al. Role of free radicals in ischemia-reperfusion injury to the liver[J]. Acta Physiol Scand Suppl, 1986, 548:101-107.
|
13 |
Lehnert M, Arteel GE, Smutney OM, et al. Dependence of liver injury after hemorrhage/resuscitation in mice on NADPH oxidase-derived superoxide[J]. Shock, 2003, 19(4): 345-351.
|
14 |
Vollmar B, Glasz J, Leiderer R, et al. Hepatic microcirculatory perfusion failure is a determinant of liver dysfunction in warm ischemia-reperfusion[J]. Am J Pathol, 1994, 145(6): 1421-1431.
|
15 |
De Pascali F, Hemann C, Samons K, et al.Hypoxia and reoxygenation induce endothelial nitric oxide synthase uncoupling in endothelial cells through tetrahydrobiopterin depletion and S-glutathionylation[J]. Biochemistry, 2014, 53(22): 3679-3688.
|
16 |
汪艳. 肿瘤坏死因子、白细胞介素-17参与炎性小体介导的肝脏无菌性炎症和纤维化发生[J]. 肝脏,2018, 23(5): 377-378.
|
17 |
王建珍,张斌,王哲,等. 18Nrf2/ARE信号通路在肢体缺血后处理减轻大鼠肝脏缺血再灌注损伤中的作用[J]. 宁夏医科大学学报,2018, 40(10): 1117-1120.
|
18 |
Chandel NS, Trzyna WC, McClintock DS, et al. Role of oxidants in NF-kappa B activation and TNF-alpha gene transcription induced by hypoxia and endotoxin[J]. J Immunol, 2000, 165(2): 1013-1021.
|
19 |
Latanich CA, Toledo-Pereyra LH. Searching for NF-kappaB-based treatments of ischemia reperfusion injury[J]. J Invest Surg, 2009, 22(4): 301-315.
|
20 |
Perry BC, Soltys D, Toledo AH, et al.Tumor necrosis factor-α in liver ischemia/reperfusion injury[J]. J Invest Surg, 2011, 24(4): 178-188.
|
21 |
He J, Gerstenlauer M, Chan LK, et al. Block of NF-kB signaling accelerates MYC-driven hepatocellular carcinogenesis and modifies the tumor phenotype towards combined hepatocellular cholangiocarcinoma[J]. Cancer Lett, 2019, 458: 113-122.
|
22 |
van Golen RF, van Gulik TM, Heger M. The sterile immune response during hepatic ischemia/reperfusion[J]. Cytokine Growth Factor Rev, 2012, 23(3): 69-84.
|
23 |
Nace GW, Huang H, Klune JR, et al. Cellular-specific role of toll-like receptor 4 in hepatic ischemia-reperfusion injury in mice[J]. Hepatology, 2013, 58(1): 374-387.
|
24 |
Tsung A, Klune JR, Zhang X, et al. HMGB1 release induced by liver ischemia involves Toll-like receptor 4 dependent reactive oxygen species production and calcium-mediated signaling[J]. J Exp Med, 2007, 204(12): 2913-2923.
|
25 |
Chang WJ, Toledo-Pereyra LH. The role of HMGB1 and HSP72 in ischemia and reperfusion injury[J]. J Surg Res, 2011, 166(2): 219-221.
|
26 |
莫翠萍,任力杰,赵振富,等. BMSCs移植治疗大鼠脊髓损伤效果及局部细胞因子表达变化[J]. 中国修复重建外科杂志,2016, 30(3): 265-271.
|
27 |
刘树雄,何建. HMGB1移位和释放与肝脏缺血再灌注损伤的机制[J]. 中国实验诊断学,2018, 22(8): 1444-1447.
|
28 |
Barnhart BC, Alappat EC, Peter ME. The CD95 type I/type II model[J]. Semin Immunol, 2003, 15(3): 185-193.
|
29 |
Huang X, Masselli A, Frisch SM, et al. Blockade of tumor necrosis factorinduced Bid cleavage by caspase-resistant Rb[J]. J Biol Chem, 2007, 282(40): 29401-29413.
|
30 |
邵文生,王江,王帆帆. HMGB1在肝缺血再灌注损伤中的作用及其与细胞凋亡的关系[J]. 中国现代普通外科进展,2016, 19(3): 175-178.
|
31 |
咸国哲,吴晓本,刘景磊,等. 姜黄素对大鼠移植肝缺血再灌注损伤指标血红素氧合酶-1表达的影响[J]. 中华实验外科杂志,2015, 32(1): 193.
|
32 |
Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch[J]. Nat Rev Cancer, 2002, 2(9): 647-656.
|
33 |
Yang E, Zha J, Jockel J, et al. Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death[J]. Cell, 1995, 80(2): 285-291.
|
34 |
Weng Q, Liu Z, Li B, et al. Oxidative stress induces mouse follicular granulosa cells apoptosis via JNK/FoxO1 pathway[J]. PLoS One, 2016, 11(12): e0167869.
|
35 |
王耀华,秦春宏. 肝脏缺血再灌注损伤机制研究进展[J]. 西南军医,2019, 21(2): 146-149.
|
36 |
Shimizu S, Narita M, Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC[J]. Nature, 1999, 399(6735): 483-487.
|
37 |
林杰,曾仲. 线粒体途径在肝脏缺血再灌注损伤中的作用的研究进展[J]. 中华肝胆外科杂志,2020, 26(1): 69-72.
|
38 |
李欢,熊静,杨树龙,等. 线粒体通路、氧化应激在肝脏缺血再灌注损伤细胞凋亡中作用机制的研究进展[J]. 山东医药,2018, 58(40): 99-102.
|
39 |
Kim JS, He L, Qian T, et al. Role of the mitochondrial permeability transition in apoptotic and necrotic death after ischemia/reperfusion injury to hepatocytes[J]. Curr Mol Med, 2003, 3(6): 527-535.
|
40 |
王菲,贾莉莉,翁亦齐,等. 线粒体自噬在缺血再灌注损伤中作用的研究进展[J]. 中华器官移植杂志,2015, 36(8): 503-505.
|
41 |
Sanjuán-Pla A, Cervera AM, Apostolova N, et al. A targeted antioxidant reveals the importance of mitochondrial reactive oxygen species in the hypoxic signaling of HIF-1alpha[J]. FEBS Lett, 2005, 579(12): 2669-2674.
|
42 |
Callapina M, Zhou J, Schmid T, et al. NO restores HIF-1alpha hydroxylation during hypoxia: role of reactive oxygen species[J]. Free Radic Biol Med, 2005, 39(7): 925-936.
|
43 |
Görlach A, Berchner-Pfannschmidt U, Wotzlaw C, et al. Reactive oxygen species modulate HIF-1 mediated PAI-1 expression: involvement of the GTPase Rac1[J]. Thromb Haemost, 2003, 89(5): 926-935.
|
44 |
Hu CJ, Wang LY, Chodosh LA, et al. Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation[J]. Mol Cell Biol, 2003, 23(24): 9361-9374.
|
45 |
Semenza GL. O2-regulated gene expression: transcriptional control of cardiorespiratory physiology by HIF-1[J]. J Appl Physiol (1985), 2004, 96(3):1173-1177.
|
46 |
Zhong Z, Ramshesh VK, Rehman H, et al. Activation of the oxygen-sensing signal cascade prevents mitochondrial injury after mouse liver ischemia-reperfusion[J]. Am J Physiol Gastrointest Liver Physiol, 2008, 295(4): G823-G832.
|
47 |
索立达,佟立权. PI3K-Akt信号传导通路在缺血再灌注损伤中的研究进展[J]. 河北医科大学学报,2014, 35(2): 237-240.
|
48 |
华东旭,王明明,马国华,等. 肝脏缺血激活PI3K/p-Akt2信号通路并促进库普弗细胞向M1型巨噬细胞转化[J]. 南京医科大学学报(自然科学版), 2019, 39(8): 1177-1182.
|
49 |
Cheng D, Zhang L, Yang G, et al. Hepatitis C virus NS5A drives a PTEN-PI3K/Akt feedback loop to support cell survival[J]. Liver Int, 2015, 35(6): 1682-1691.
|
50 |
Gnocchi D, Leoni S, Incerpi S, et al. 3,5,3′-triiodothyronine (T3) stimulates cell proliferation through the activation of the PI3K/Akt pathway and reactive oxygen species (ROS) production in chick embryo hepatocytes[J]. Steroids, 2012, 77(6): 589-595.
|
51 |
Yang J, Chen Q, Tian S, et al. The role of 1,25-dyhydroxyvitamin D3 in mouse liver ischemia reperfusion injury: regulation of autophagy through activation of MEK/ERK signaling and PTEN/PI3K/Akt/Mtorc1 signaling[J]. Am J Transl Res, 2015, 7(12): 2630-2645.
|
52 |
Zhong C, Pu LY, Fang MM, et al. Retinoic acid receptor a promotes autophagy to alleviate liver ischemia and reperfusion injury[J]. World J Gastroenterol, 2015, 21(43): 12381-12391.
|
53 |
Xu J, Qin X, Cai X, et al.Mitochondrial JNK activation triggers autophagy and apoptosis and aggravates myocardial injury following ischemia/reperfusion[J]. Biochim Biophys Acta, 2015, 1852(2): 262-270.
|
54 |
Wang C, Chen K, Xia Y, et al. N-Acetylcysteine attenuates ischemia-reperfusion-induced apoptosis and autophagy in mouse liver via regulation of the ROS/JNK/Bcl-2 pathway[J]. PLoS One, 2014, 9(9): e108855.
|
55 |
Katwal G, Baral D, Fan X, et al. SIRT3 a major player in attenuation of hepatic ischemia-reperfusion injury by reducing ROS via its downstream mediators: SOD2, CYP-D, and HIF-1 α[J]. Oxid Med Cell Longev, 2018: 2976957.
|
56 |
Gao W, Feng Z, Zhang S, et al. Anti-inflammatory and antioxidant effect of eucommia ulmoides polysaccharide in hepatic ischemia-reperfusion injury by regulating ROS and the TLR-4-NF-κB pathway[J]. Biomed Res Int, 2020:1860637.
|
57 |
Sattler PB, Schäfer S, Karagiannidis C. Extrakorporale Membranoxygenierung (ECMO) - State of the Art[J]. Der Pneumologe, 2020, 17(4): 249-255.
|
58 |
Gallinat A, Amrillaeva V, Hoyer DP, et al. Reconditioning by end-ischemic hypothermic in-house machine perfusion: a promising strategy to improve outcome in expanded criteria donors kidney transplantation[J]. Clin Transplant, 2017, 31(3): 12904.
|
59 |
孙煦勇. 体外膜肺氧合用于尸体供器官保护的技术操作规范(2019版)[J]. 器官移植,2019, 10(4): 376-382.
|
60 |
孙煦勇,秦科. 体外膜肺氧合在中国公民逝世后捐献供器官保护中的应用专家共识(2016版)[J/CD]. 中华移植杂志:电子版,2016, 10(3): 107-111.
|