5 |
Baek CH, Kim H, Yu H, et al. Risk factors of acute rejection in patients with BK nephropathy after reduction of immunosuppression [J]. Ann Transplant, 2018, 23: 704-712.
|
6 |
Hughes CE, Nibbs RJB. A guide to chemokines and their receptors[J]. FEBS J, 2018, 285(16): 2944-2971.
|
7 |
Mohammadi MH, Kariminik A. CC and CXC chemokines play key roles in the development of polyomaviruses related pathological conditions [J]. Virol J, 2021, 18(1): 111.
|
8 |
Kawai T, Akira S. TLR signaling [J]. Cell Death Differ, 2006, 13(5): 816-825.
|
9 |
Heutinck KM, Rowshani AT, Kassies J, et al. Viral double-stranded RNA sensors induce antiviral, pro-inflammatory, and pro-apoptotic responses in human renal tubular epithelial cells [J]. Kidney Int, 2012, 82(6): 664-675.
|
10 |
Ribeiro A, Wörnle M, Motamedi N, et al. Activation of innate immune defense mechanisms contributes to polyomavirus BK-associated nephropathy [J]. Kidney Int, 2012, 81(1): 100-111.
|
11 |
Kariminik A, Yaghobi R, Dabiri S. CXCL9 expression and polyomavirus BK infectivity in renal transplant patients with nephropathy [J]. Cell Mol Biol (Noisy-le-grand), 2016, 62(1): 104-108
|
12 |
Charbonneau H, Tonks NK, Walsh KA, et al. The leukocyte common antigen (CD45): a putative receptor-linked protein tyrosine phosphatase [J]. Proc Natl Acad Sci U S A, 1988, 85(19): 7182-7186.
|
13 |
Gabaev I, Steinbrück L, Pokoyski C, et al. The human cytomegalovirus UL11 protein interacts with the receptor tyrosine phosphatase CD45, resulting in functional paralysis of T cells [J]. PLoS Pathog, 2011, 7(12): e1002432.
|
14 |
Mulrooney TJ, Posch PE, Hurley CK. DAP12 impacts trafficking and surface stability of killer immunoglobulin-like receptors on natural killer cells [J]. J Leukoc Biol, 2013, 94(2): 301-313.
|
15 |
Liu Y, Li R, Chen XX, et al. Nonmuscle myosin heavy chain IIA recognizes sialic acids on sialylated RNA viruses to suppress proinflammatory responses via the DAP12-Syk pathway [J]. mBio, 2019, 10(3): e00574-19.
|
16 |
Kristiansen M, Graversen JH, Jacobsen C,et al. Identification of the haemoglobin scavenger receptor [J]. Nature, 2001, 409(6817): 198-201.
|
17 |
Li P, Cheng D, Wen J, et al. The immunophenotyping of different stages of BK virus allograft nephropathy [J]. Ren Fail, 2019, 41(1): 855-861.
|
18 |
Ostermann G, Weber KS, Zernecke A, et al. JAM-1 is a ligand of the beta(2) integrin LFA-1 involved in transendothelial migration of leukocytes [J]. Nat Immunol, 2002, 3(2): 151-158.
|
19 |
Altorki T, Muller W, Brass A, et al. The role of β2 integrin in dendritic cell migration during infection [J]. BMC Immunol, 2021, 22(1): 2.
|
20 |
Womer KL, Huang Y, Herren H, et al. Dendritic cell deficiency associated with development of BK viremia and nephropathy in renal transplant recipients [J]. Transplantation, 2010, 89(1): 115-123.
|
21 |
Rouleau M, Mollereau B, Bernard A, et al. CD2 induced apoptosis of peripheral T cells [J]. Transplant Proc, 1997, 29(5): 2377-2378.
|
1 |
Low J, Humes HD, Szczypka M, et al. BKV and SV40 infection of human kidney tubular epithelial cells in vitro[J]. Virology, 2004, 323(2): 182-188.
|
2 |
Schwarz A, Linnenweber-Held S, Heim A, et al. Viral origin, clinical course, and renal outcomes in patients with BK virus infection after living-donor renal transplantation[J]. Transplantation, 2016, 100(4): 844-853.
|
3 |
Drachenberg CB, Papadimitriou JC, Hirsch HH, et al. Histological patterns of polyomavirus nephropathy: correlation with graft outcome and viral load[J]. Am J Transplant, 2004, 4(12): 2082-2092.
|
4 |
Kidney Disease: Improving Global Outcomes (KDIGO) Transplant Work Group. KDIGO clinical practice guideline for the care of kidney transplant recipients[J]. Am J Transplant, 2009, 9(Suppl 3): S1-S155.
|
22 |
Wyss DF, Choi JS, Li J, et al. Conformation and function of the N-linked glycan in the adhesion domain of human CD2 [J]. Science, 1995, 269(5228): 1273-1278.
|
23 |
Sayre PH, Reinherz EL. Structure and function of the erythrocyte receptor CD2 on human T lymphocytes: a review [J]. Scand J Rheumatol Suppl, 1988, 76: 131-144.
|
24 |
Wakkach A, Cottrez F, Groux H. Differentiation of regulatory T cells 1 is induced by CD2 costimulation [J]. J Immunol, 2001, 167(6): 3107-3113.
|
25 |
Renner FC, Dietrich H, Bulut N, et al. The risk of polyomavirus-associated graft nephropathy is increased by a combined suppression of CD8 and CD4 cell-dependent immune effects [J]. Transplant Proc, 2013, 45(4): 1608-1610.
|
26 |
Cui K, Liu C, Li X, et al. Comprehensive characterization of the rRNA metabolism-related genes in human cancer [J]. Oncogene, 2020, 39(4): 786-800.
|
27 |
Leboeuf C, Wilk S, Achermann R, et al. BK polyomavirus-specific 9mer CD8 T cell responses correlate with clearance of BK viremia in kidney transplant recipients: first report from the Swiss Transplant Cohort Study [J]. Am J Transplant, 2017, 17(10): 2591-2600.
|
28 |
Hu Q, Lyon CJ, Fletcher JK, et al. Extracellular vesicle activities regulating macrophage- and tissue-mediated injury and repair responses [J]. Acta Pharm Sin B, 2021, 11(6): 1493-1512.
|
29 |
Wilhelm M, Kaur A, Wernli M, et al. BK polyomavirus-specific CD8 T-cell expansion in vitro using 27mer peptide antigens for developing adoptive T-cell transfer and vaccination [J]. J Infect Dis, 2021, 223(8): 1410-1422.
|
30 |
Holtmeier W, Kabelitz D. γδ T cells link innate and adaptive immune responses [J]. Chem Immunol Allergy, 2005, 86: 151-183.
|
31 |
Arruda LCM, Gaballa A, Uhlin M. Impact of γδ T cells on clinical outcome of hematopoietic stem cell transplantation: systematic review and meta-analysis [J]. Blood Adv, 2019, 3(21): 3436-3448.
|
32 |
Pouteil-Noble C, Ecochard R, Landrivon G, et al. Cytomegalovirus infection-an etiological factor for rejection? A prospective study in 242 renal transplant patients [J]. Transplantation, 1993, 55(4): 851-857.
|
33 |
Zhao X, Li Y, Ohe H, et al. Intragraft Vδ1 γδ T cells with a unique T-cell receptor are closely associated with pediatric semiallogeneic liver transplant tolerance [J]. Transplantation, 2013, 95(1): 192-202.
|
34 |
Portolani M, Piani M, Gazzanelli G, et al. Restricted replication of BK virus in human lymphocytes [J]. Microbiologica, 1985, 8(1): 59-66.
|