| 1 | Zhou R, Liu H, Hou X, et al. Bi-functional KIT-PR1P peptides combine with VEGF to protect ischemic kidney in rats by targeting to Kim-1[J]. Regen Ther, 2024, 25: 162-173. | 
																													
																							| 2 | Zhong D, Quan L, Hao C, et al. Targeting mPGES-2 to protect against acute kidney injury via inhibition of ferroptosis dependent on p53[J]. Cell Death Dis, 2023, 14(10): 710. | 
																													
																							| 3 | Song S, Hou X, Zhang W, et al. Specific bFGF targeting of KIM-1 in ischemic kidneys protects against renal ischemia-reperfusion injury in rats[J]. Regen Biomater, 2022, 9: rbac029. | 
																													
																							| 4 | Wu KK. Extracellular Succinate: a physiological messenger and a pathological trigger[J]. Int J Mol Sci, 2023, 24(13): 11165 | 
																													
																							| 5 | Kuo CC, Wu JY, Wu KK. Cancer-derived extracellular succinate: a driver of cancer metastasis[J]. J Biomed Sci, 2022, 29(1): 93. | 
																													
																							| 6 | Mills EL, Harmon C, Jedrychowski MP, et al. UCP1 governs liver extracellular succinate and inflammatory pathogenesis[J]. Nat Metab, 2021, 3(5): 604-617. | 
																													
																							| 7 | Macias-Ceja DC, Ortiz-Masia D, Salvador P, et al. Succinate receptor mediates intestinal inflammation and fibrosis[J]. Mucosal Immunol, 2019, 12(1): 178-187. | 
																													
																							| 8 | Prag HA, Gruszczyk AV, Huang MM, et al. Mechanism of succinate efflux upon reperfusion of the ischaemic heart[J]. Cardiovasc Res, 2021, 117(4): 1188-1201. | 
																													
																							| 9 | Wang YH, Yan ZZ, Luo SD, et al. Gut microbiota-derived succinate aggravates acute lung injury after intestinal ischaemia/reperfusion in mice[J]. Eur Respir J, 2023, 61(2): 2200840. | 
																													
																							| 10 | Sun H, Zhu G, Ling S, et al. 4′-O-methylbavachalcone inhibits succinate induced cardiomyocyte hypertrophy via the NFATc4 pathway [J]. Exp Ther Med, 2023, 25(4): 172. | 
																													
																							| 11 | Gilissen J, Jouret F, Pirotte B, et al. Insight into SUCNR1 (GPR91) structure and function[J]. Pharmacol Ther, 2016, 159: 56-65. | 
																													
																							| 12 | Jiang S, Su H. Exploration of the shared gene signatures and biological mechanisms between ischemia-reperfusion injury and antibody-mediated rejection in renal transplantation [J]. Transpl Immunol, 2024, 83:102001. | 
																													
																							| 13 | Nagaraja P, Roberts GW, Stephens M,et al. Influence of delayed graft function and acute rejection on outcomes after kidney transplantation from donors after cardiac death [J]. Transplantation, 2012, 94(12): 1218-1223. | 
																													
																							| 14 | Fan H, Liu J, Sun J, et al. Advances in the study of B cells in renal ischemia-reperfusion injury [J]. Front Immunol, 2023, 14: 1216094. | 
																													
																							| 15 | Lasorsa F, Rutigliano M, Milella M, et al. Complement system and the kidney: its role in renal diseases, kidney transplantation and renal cell carcinoma[J]. Int J Mol Sci, 2023, 24(22): 16515. | 
																													
																							| 16 | Zhang X, Lyu D, Li S et al. Discovery of a SUCNR1 antagonist for potential treatment of diabetic nephropathy: In silico and in vitro studies [J]. Int J Biol Macromol, 2024, 268(Pt 2): 131898. | 
																													
																							| 17 | Fernandez-Veledo S, Marsal-Beltran A, Vendrell J. Type 2 diabetes and succinate: unmasking an age-old molecule[J]. Diabetologia, 2024, 67(3): 430-442. | 
																													
																							| 18 | Regard JB, Sato IT, Coughlin SR. Anatomical profiling of G protein-coupled receptor expression[J]. Cell, 2008, 135(3): 561-571. | 
																													
																							| 19 | Oh CJ, Kim MJ, Lee J M, et al. Inhibition of pyruvate dehydrogenase kinase 4 ameliorates kidney ischemia-reperfusion injury by reducing succinate accumulation during ischemia and preserving mitochondrial function during reperfusion[J]. Kidney Int, 2023, 104(4): 724-739. | 
																													
																							| 20 | Patel NS, Chatterjee PK, Di Paola R, et al. Endogenous interleukin-6 enhances the renal injury, dysfunction, and inflammation caused by ischemia/reperfusion[J]. J Pharmacol Exp Ther, 2005, 312(3):1170-1178. | 
																													
																							| 21 | Di Paola R, Genovese T, Impellizzeri D, et al. The renal injury and inflammation caused by ischemia-reperfusion are reduced by genetic inhibition of TNF-αR1: a comparison with infliximab treatment[J]. Eur J Pharmacol, 2013, 700(1-3):134-146. |