1 |
Parlakpinar H, Gunata M. Transplantation and immunosuppression:a review of novel transplant-related immunosuppressant drugs[J].Immunopharmacol Immunotoxicol, 2021,43(6):651-665.
|
2 |
Sayegh MH, Carpenter CB. Transplantation 50 years later-progress,challenges, and promises[J]. N Engl J Med, 2004,351(26):2761-2766.
|
3 |
Meneghini M, Bestard O, Grinyo JM. Immunosuppressive drugs modes of action[J]. Best Pract Res Clin Gastroenterol, 2021,54-55:101757.
|
4 |
Stucker F, Ackermann D. Immunosuppressive drugs - how they work,their side effects and interactions[J]. Ther Umsch, 2011,68(12):679-686.
|
5 |
Tran DT, Sundararaj K, Atkinson C, et al. T-cell immunometabolism:therapeutic implications in organ transplantation[J]. Transplantation,2021,105(11):e191-e201.
|
6 |
Mathis D, Shoelson SE. Immunometabolism:an emerging frontier[J]. Nat Rev Immunol, 2011,11(2):81.
|
7 |
江彬, 赵文涛, 欧阳聪, 等. 细胞代谢调控网络[J]. 厦门大学学报(自然科学版), 2022,61(3):346-364.
|
8 |
Iyer A, Brown L, Whitehead JP, et al. Nutrient and immune sensing are obligate pathways in metabolism, immunity, and disease[J].FASEB J, 2015,29(9):3612-3625.
|
9 |
刘娟宏, 刘峰. 免疫与代谢:网络调控、取舍权衡与机体稳态[J]. 中国科学:生命科学, 2024,54(11):2079-2099.
|
10 |
McNelis JC, Olefsky JM. Macrophages, immunity, and metabolic disease[J]. Immunity, 2014,41(1):36-48.
|
11 |
Wahl DR, Byersdorfer CA, Ferrara JL, et al. Distinct metabolic programs in activated T cells:opportunities for selective immunomodulation[J]. Immunol Rev, 2012,249(1):104-115.
|
12 |
MacIver NJ, Michalek RD, Rathmell JC. Metabolic regulation of T lymphocytes[J]. Annu Rev Immunol, 2013,31:259-283.
|
13 |
Pearce EL, Poffenberger MC, Chang CH, et al. Fueling immunity:insights into metabolism and lymphocyte function[J]. Science,2013,342(6155):1242454.
|
14 |
Fox CJ, Hammerman PS, Thompson CB. Fuel feeds function:energy metabolism and the T-cell response[J]. Nat Rev Immunol, 2005,5(11):844-852.
|
15 |
Masopust D, Schenkel JM. The integration of T cell migration,differentiation and function[J]. Nat Rev Immunol, 2013,13(5):309-320.
|
16 |
Buck MD, O′Sullivan D, Pearce EL. T cell metabolism drives immunity[J]. J Exp Med, 2015,212(9):1345-1360.
|
17 |
Zarrinpar A, Bensinger SJ. The therapeutic potential of T cell metabolism[J]. Am J Transplant, 2017,17(7):1705-1712.
|
18 |
Pearce EL, Pearce EJ. Metabolic pathways in immune cell activation and quiescence[J]. Immunity, 2013,38(4):633-643.
|
19 |
Priyadharshini B, Turka LA. T-cell energy metabolism as a controller of cell fate in transplantation[J]. Curr Opin Organ Transplant,2015,20(1):21-28.
|
20 |
Piotrkowski J, Buda N, Januszko-Giergielewicz B, et al. Use of bedside ultrasound to assess fluid status:a literature review[J]. Pol Arch Intern Med, 2019,129(10):692-699.
|
21 |
Madden MZ, Rathmell JC. The complex integration of T-cell metabolism and immunotherapy[J]. Cancer Discov, 2021,11(7):1636-1643.
|
22 |
Patel CH, Powell JD. Targeting T cell metabolism to regulate T cell activation, differentiation and function in disease[J]. Curr Opin Immunol, 2017,46:82-88.
|
23 |
Dimeloe S, Burgener AV, Grahlert J, et al. T-cell metabolism governing activation, proliferation and differentiation; a modular view[J]. Immunology, 2017,150(1):35-44.
|
24 |
Matarese G, Colamatteo A, De Rosa V. Metabolic fuelling of proper T cell functions[J]. Immunol Lett, 2014,161(2):174-178.
|
25 |
Donnelly RP, Finlay DK. Glucose, glycolysis and lymphocyte responses[J]. Mol Immunol, 2015,68(2 Pt C):513-519.
|
26 |
Cretenet G, Clerc I, Matias M, et al. Cell surface Glut1 levels distinguish human CD4 and CD8 T lymphocyte subsets with distinct effector functions[J]. Sci Rep, 2016,6:24129.
|
27 |
Geltink RIK, Kyle RL, Pearce EL. Unraveling the complex interplay between T cell metabolism and function[J]. Annu Rev Immunol,2018,36:461-488.
|
28 |
Diniz VLS, Alvares-Saraiva AM, Serdan TDA, et al. Essential metabolism required for T and B lymphocyte functions:an update[J]. Clin Sci (Lond), 2023,137(10):807-821.
|
29 |
Palmer CS, Hussain T, Duette G, et al. Regulators of glucose metabolism in CD4+ and CD8+T cells[J]. Int Rev Immunol, 2016,35(6):477-488.
|
30 |
Chang CH, Curtis JD, Maggi LB Jr, et al. Posttranscriptional control of T cell effector function by aerobic glycolysis[J]. Cell, 2013,153(6):1239-1251.
|
31 |
Gerriets VA, Rathmell JC. Metabolic pathways in T cell fate and function[J]. Trends Immunol, 2012,33(4):168-173.
|
32 |
Michalek RD, Gerriets VA, Jacobs SR, et al. Cutting edge:distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+T cell subsets[J]. J Immunol, 2011,186(6):3299-3303.
|
33 |
Nguyen HD, Chatterjee S, Haarberg KM, et al. Metabolic reprogramming of alloantigen-activated T cells after hematopoietic cell transplantation[J]. J Clin Invest, 2016,126(4):1337-1352.
|
34 |
Gatza E, Wahl DR, Opipari AW, et al. Manipulating the bioenergetics of alloreactive T cells causes their selective apoptosis and arrests graft-versus-host disease[J]. Sci Transl Med, 2011,3(67):67ra8.
|
35 |
王帅威, 罗雪瑞, 李扬扬, 等. T细胞代谢及其调节研究进展[J]. 生命科学, 2016,28(2):222-230.
|
36 |
Braun MY. The natural history of T cell metabolism[J]. Int J Mol Sci, 2021,22(13):6779.
|
37 |
DeBose-Boyd RA. Significance and regulation of lipid metabolism[J]. Semin Cell Dev Biol, 2018,81:97.
|
38 |
Kidani Y, Elsaesser H, Hock MB, et al. Sterol regulatory elementbinding proteins are essential for the metabolic programming of effector T cells and adaptive immunity[J]. Nat Immunol, 2013,14(5):489-499.
|
39 |
Pinzon Grimaldos A, Bini S, Pacella I, et al. The role of lipid metabolism in shaping the expansion and the function of regulatory T cells[J]. Clin Exp Immunol, 2022,208(2):181-192.
|
40 |
Lim SA, Su W, Chapman NM, et al. Lipid metabolism in T cell signaling and function[J]. Nat Chem Biol, 2022,18(5):470-481.
|
41 |
van der Windt GJ, Everts B, Chang CH, et al. Mitochondrial respiratory capacity is a critical regulator of CD8+T cell memory development[J]. Immunity, 2012,36(1):68-78.
|
42 |
Cai F, Jin S, Chen G. The effect of lipid metabolism on CD4+T cells[J]. Mediators Inflamm, 2021:6634532.
|
43 |
Sakaguchi S, Yamaguchi T, Nomura T, et al. Regulatory T cells and immune tolerance[J]. Cell, 2008,133(5):775-787.
|
44 |
Howie D, Ten Bokum A, Necula AS, et al. The role of lipid metabolism in T lymphocyte differentiation and survival[J]. Front Immunol, 2017,8:1949.
|
45 |
Choi JM, Bothwell AL. The nuclear receptor PPARs as important regulators of T-cell functions and autoimmune diseases[J]. Mol Cells, 2012,33(3):217-222.
|
46 |
Zeng H, Yang K, Cloer C, et al. mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function[J].Nature, 2013,499(7459):485-490.
|
47 |
Werlen G, Jain R, Jacinto E. MTOR signaling and metabolism in early T cell development[J]. Genes (Basel), 2021,12(5):728.
|
48 |
Huang H, Long L, Zhou P, et al. mTOR signaling at the crossroads of environmental signals and T-cell fate decisions[J]. Immunol Rev,2020,295(1):15-38.
|
49 |
Chapman NM, Chi H. mTOR signaling, Tregs and immune modulation[J]. Immunotherapy, 2014,6(12):1295-1311.
|
50 |
Yang L, Chu Z, Liu M, et al. Amino acid metabolism in immune cells:essential regulators of the effector functions, and promising opportunities to enhance cancer immunotherapy[J]. J Hematol Oncol, 2023,16(1):59.
|
51 |
Le Bourgeois T, Strauss L, Aksoylar HI, et al. Targeting T cell metabolism for improvement of cancer immunotherapy[J]. Front Oncol, 2018,8:237.
|
52 |
Siska PJ, Kim B, Ji X, et al. Fluorescence-based measurement of cystine uptake through xCT shows requirement for ROS detoxification in activated lymphocytes[J]. J Immunol Methods, 2016,438:51-58.
|
53 |
Munn DH, Zhou M, Attwood JT, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism[J]. Science, 1998,281(5380):1191-1193.
|
54 |
Boros FA, Vécsei L. Immunomodulatory effects of genetic alterations affecting the kynurenine pathway[J]. Front Immunol, 2019,10:2570.
|
55 |
Zhang A, Carroll C, Raigani S, et al. Tryptophan metabolism via the kynurenine pathway:implications for graft optimization during machine perfusion[J]. J Clin Med, 2020,9(6):1864.
|
56 |
Zheng X, Zhang A, Binnie M, et al. Kynurenine 3-monooxygenase is a critical regulator of renal ischemia-reperfusion injury[J]. Exp Mol Med, 2019,51(2):1-14.
|
57 |
Macintyre AN, Gerriets VA, Nichols AG, et al. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function[J]. Cell Metab, 2014,20(1):61-72.
|
58 |
Park MJ, Lee SY, Moon SJ, et al. Metformin attenuates graft-versushost disease via restricting mammalian target of rapamycin/signal transducer and activator of transcription 3 and promoting adenosine monophosphate-activated protein kinase-autophagy for the balance between T helper 17 and Tregs[J]. Transl Res, 2016,173:115-130.
|
59 |
He L. Metformin and systemic metabolism[J]. Trends Pharmacol Sci, 2020,41(11):868-881.
|
60 |
Guo Y, Shi J, Wang Q, et al. Metformin alleviates allergic airway inflammation and increases Treg cells in obese asthma[J]. J Cell Mol Med, 2021,25(4):2279-2284.
|
61 |
Byersdorfer CA, Tkachev V, Opipari AW, et al. Effector T cells require fatty acid metabolism during murine graft-versus-host disease[J]. Blood, 2013,122(18):3230-3237.
|
62 |
Lee CF, Lo YC, Cheng CH, et al. Preventing allograft rejection by targeting immune metabolism[J]. Cell Rep, 2015,13(4):760-770.
|
63 |
O′Neill LA, Kishton RJ, Rathmell J. A guide to immunometabolism for immunologists[J]. Nat Rev Immunol, 2016,16(9):553-565.
|
64 |
Jewell JL, Kim YC, Russell RC, et al. Metabolism. Differential regulation of mTORC1 by leucine and glutamine[J]. Science, 2015,347(6218):194-198.
|