1 |
Zhao H, Alam A, Soo AP, et al. Ischemia-reperfusion injury reduces long term renal graft survival: mechanism and beyond[J].EBioMedicine, 2018, 28: 31-42.
|
2 |
Ornellas FM, Ornellas DS, Martini SV, et al. Bone marrow-derived mononuclear cell therapy accelerates renal ischemia-reperfusion injury recovery by modulating inflammatory, antioxidant and apoptotic related molecules[J]. Cell Physiol Biochem, 2017, 41(5): 1736-1752.
|
3 |
Tejchman K, Kotfis K, Sieńko J. Biomarkers and mechanisms of oxidative stress-last 20 years of research with an emphasis on kidney damage and renal transplantation[J]. Int J Mol Sci, 2021, 22(15):8010.
|
4 |
Su L, Zhang J, Gomez H, et al. Mitochondria ROS and mitophagy in acute kidney injury[J]. Autophagy, 2023, 19(2): 401-414.
|
5 |
Raedschelders K, Ansley DM, Chen DD. The cellular and molecular origin of reactive oxygen species generation during myocardial ischemia and reperfusion[J]. Pharmacol Ther, 2012, 133(2): 230-255.
|
6 |
Li J, Cao F, Yin HL, et al. Ferroptosis: past, present and future[J]. Cell Death Dis, 2020, 11(2): 88.
|
7 |
Wu J, Wang Y, Jiang R, et al. Ferroptosis in liver disease: new insights into disease mechanisms[J]. Cell Death Discov, 2021, 7(1): 276.
|
8 |
Dar WA, Sullivan E, Bynon JS, et al. Ischaemia reperfusion injury in liver transplantation: cellular and molecular mechanisms[J]. Liver Int, 2019, 39(5): 788-801.
|
9 |
Dugbartey GJ. Cellular and molecular mechanisms of cell damage and cell death in ischemia-reperfusion injury in organ transplantation[J].Mol Biol Rep, 2024, 51(1): 473.
|
10 |
Luo Y, Zhou S, Xu T, et al. SENP2-mediated SERCA2a deSUMOylation increases calcium overload in cardiomyocytes to aggravate myocardial ischemia/reperfusion injury[J]. Chin Med J(Engl), 2023, 136(20): 2496-2507.
|
11 |
Bigham NP, Wilson JJ. Metal coordination complexes as therapeutic agents for ischemia-reperfusion injury[J]. J Am Chem Soc, 2023,145(17): 9389-9409.
|
12 |
Newton K, Strasser A, Kayagaki N, et al. Cell death[J]. Cell,2024, 187(2): 235-256.
|
13 |
Bertheloot D, Latz E, Franklin BS. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death[J]. Cell Mol Immunol,2021, 18(5): 1106-1121.
|
14 |
Thomas K, Zondler L, Ludwig N, et al. Glutamine prevents acute kidney injury by modulating oxidative stress and apoptosis in tubular epithelial cells[J]. JCI Insight, 2022, 7(21):e163161.
|
15 |
Li F, Mao Q, Wang J, et al. Salidroside inhibited cerebral ischemia/reperfusion-induced oxidative stress and apoptosis via Nrf2/Trx1 signaling pathway[J]. Metab Brain Dis, 2022,37(8):2965-2978.
|
16 |
D'Arcy MS. Cell death: a review of the major forms of apoptosis,necrosis and autophagy[J]. Cell Biol Int, 2019, 43(6): 582-592.
|
17 |
Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell death[J]. Nat Rev Mol Cell Biol, 2020,21(2):85-100.
|
18 |
Qi Y, Hu M, Wang Z, et al. Mitochondrial iron regulation as an emerging target in ischemia/reperfusion injury during kidney transplantation[J]. Biochem Pharmacol, 2023, 215: 115725.
|
19 |
Kaltenmeier C, Wang R, Popp B, et al. Role of immunoinflammatory signals in liver ischemia-reperfusion injury[J]. Cells,2022, 11(14):2222.
|
20 |
Saeed WK, Jun DW, Jang K, et al. Does necroptosis have a crucial role in hepatic ischemia-reperfusion injury?[J]. PLoS One, 2017,12(9): e0184752.
|
21 |
Chen X, Zhu R, Zhong J, et al. Mosaic composition of RIP1-RIP3 signalling hub and its role in regulating cell death[J]. Nat Cell Biol,2022, 24(4): 471-482.
|
22 |
Tong X, Tang R, Xiao M, et al. Targeting cell death pathways for cancer therapy: recent developments in necroptosis, pyroptosis,ferroptosis, and cuproptosis research[J]. J Hematol Oncol, 2022,15(1): 174.
|
23 |
Decuypere JP, Ceulemans LJ, Agostinis P, et al. Autophagy and the kidney: implications for ischemia-reperfusion injury and therapy[J]. Am J Kidney Dis, 2015, 66(4): 699-709.
|
24 |
Li CJ, Liao WT, Wu MY, et al. New insights into the role of autophagy in tumor immune microenvironment[J]. Int J Mol Sci,2017, 18(7):1566.
|
25 |
Kesavardhana S, Malireddi RKS, Kanneganti TD. Caspases in cell death, inflammation, and pyroptosis[J]. Annu Rev Immunol, 2020,38: 567-595.
|
26 |
Zhao H, Yang Y, Si X, et al. The role of pyroptosis and autophagy in ischemia reperfusion injury[J]. Biomolecules, 2022, 12(7):1010.
|
27 |
Smith SF, Hosgood SA, Nicholson ML. Ischemia-reperfusion injury in renal transplantation: 3 key signaling pathways in tubular epithelial cells[J]. Kidney Int, 2019, 95(1): 50-56.
|
28 |
Lasorsa F, Rutigliano M, Milella M, et al. Ischemia-reperfusion injury in kidney transplantation:mechanisms and potential therapeutic targets[J]. Int J Mol Sci, 2024, 25(8):4332.
|
29 |
Santarsiero D, Aiello S. The complement system in kidney transplantation[J]. Cells, 2023, 12(5):791.
|
30 |
Tang SP, Mao XL, Chen YH, et al. Reactive oxygen species induce fatty liver and ischemia-reperfusion injury by promoting inflammation and cell death[J]. Front Immunol, 2022, 13: 870239.
|
31 |
Granata S, La Russa D, Stallone G, et al. Inflammasome pathway in kidney transplantation[J]. Front Med (Lausanne), 2023, 10:1303110.
|
32 |
Lv S, Liu H, Wang H. The interplay between autophagy and NLRP3 inflammasome in ischemia/reperfusion injury[J]. Int J Mol Sci,2021, 22(16):8773.
|
33 |
Huang G, Bao J, Shao X, et al. Inhibiting pannexin-1 alleviates sepsis-induced acute kidney injury via decreasing NLRP3 inflammasome activation and cell apoptosis[J]. Life Sci, 2020, 254: 117791.
|
34 |
Jia Y, Cui R, Wang C, et al. Metformin protects against intestinal ischemia-reperfusion injury and cell pyroptosis via TXNIP-NLRP3-GSDMD pathway[J]. Redox Biol, 2020, 32: 101534.
|
35 |
Su X, Liu B, Wang S, et al. NLRP3 inflammasome: a potential therapeutic target to minimize renal ischemia/reperfusion injury during transplantation[J]. Transpl Immunol, 2022, 75: 101718.
|
36 |
Jadlowiec CC, Frasco P, Macdonough E, et al. Association of DGF and early readmissions on outcomes following kidney transplantation[J]. Transpl Int, 2022, 35: 10849.
|
37 |
Puttarajappa CM, Jorgensen D, Yabes JG, et al. Trends and impact on cold ischemia time and clinical outcomes using virtual crossmatch for deceased donor kidney transplantation in the United States[J].Kidney Int, 2021, 100(3): 660-671.
|
38 |
Andras I, Piana A, Verri P, et al. Systematic review of techniques and devices used to avoid warm ischemia time injury during kidney transplantation[J]. World J Urol, 2023, 41(4): 993-1003.
|
39 |
Barba J, Zudaire JJ, Robles JE, et al. Is there a safe cold ischemia time interval for the renal graft?[J]. Actas Urol Esp, 2011,35(8):475-480.
|
40 |
Benichou G, Yamada Y, Yun SH, et al. Immune recognition and rejection of allogeneic skin grafts[J]. Immunotherapy, 2011, 3(6):757-770.
|
41 |
Zhou H, Lu H, Sun L, et al. Diagnostic biomarkers and immune infiltration in patients with T cell-mediated rejection after kidney transplantation[J]. Front Immunol, 2021, 12: 774321.
|
42 |
Liu Y, Pu X, Qin X, et al. Neutrophil extracellular traps regulate HMGB1 translocation and kupffer cell M1 polarization during acute liver transplantation rejection[J]. Front Immunol, 2022, 13: 823511.
|
43 |
Brenner BM, Lawler EV, Mackenzie HS. The hyperfiltration theory:a paradigm shift in nephrology[J]. Kidney Int, 1996,49(6):1774-1777.
|
44 |
Helal I, Fick-Brosnahan GM, Reed-Gitomer B, et al. Glomerular hyperfiltration: definitions, mechanisms and clinical implications[J].Nat Rev Nephrol, 2012, 8(5): 293-300.
|
45 |
Chen J, Layton AT, Edwards A. A mathematical model of O2 transport in the rat outer medulla. I. Model formulation and baseline results[J]. Am J Physiol Renal Physiol, 2009, 297(2): F517-F536.
|
46 |
Molitoris BA, Sutton TA. Endothelial injury and dysfunction: role in the extension phase of acute renal failure[J]. Kidney Int, 2004, 66(2): 496-499.
|
47 |
Legrand M, Mik EG, Johannes T, et al. Renal hypoxia and dysoxia after reperfusion of the ischemic kidney[J]. Mol Med, 2008, 14(7-8): 502-516.
|
48 |
魏军军, 楼仲冠, 楼江涌, 等. 慢性移植肾间质纤维化的发病机制及其治疗的研究进展[J]. 中华器官移植杂志, 2017, 38(11):699-703.
|
49 |
Nickerson PW. Rationale for the IMAGINE study for chronic active antibody-mediated rejection (caAMR) in kidney transplantation[J].Am J Transplant, 2022, 22 Suppl 4: 38-44.
|
50 |
Norman JT, Clark IM, Garcia PL. Hypoxia promotes fibrogenesis in human renal fibroblasts[J]. Kidney Int, 2000, 58(6): 2351-2366.
|
51 |
Zhang M, Liu Q, Meng H, et al. Ischemia-reperfusion injury:molecular mechanisms and therapeutic targets[J]. Signal Transduct Target Ther, 2024, 9(1): 12.
|
52 |
Dufour L, Ferhat M, Robin A, et al. Ischemia-reperfusion injury after kidney transplantation[J]. Nephrol Ther, 2020, 16(6): 388-399.
|
53 |
Zheng J, Lan P, Li M, et al. Anti-Na+/K+-ATPase DR antibody attenuates UUO-induced renal fibrosis through inhibition of Na+/K+-ATPase α1-dependent HMGB1 release[J]. Int Immunopharmacol,2023, 116: 109826.
|
54 |
Yan X, Xun M, Dou X, et al. Activation of Na+-K+-ATPase with DRm217 attenuates oxidative stress-induced myocardial cell injury via closing Na+-K+-ATPase/Src/Ros amplifier[J]. Apoptosis, 2017,22(4): 531-543.
|