1 |
Hill NR, Fatoba ST, Oke JL, et al. Global prevalence of chronic kidney disease - a systematic review and meta-analysis[J]. PLoS One, 2016, 11(7): e0158765.
|
2 |
Webster AC, Nagler EV, Morton RL, et al. Chronic kidney disease[J]. Lancet, 2017, 389(10075): 1238-1252.
|
3 |
Shook BA, Wasko RR, Rivera-Gonzalez GC, et al. Myofibroblast proliferation and heterogeneity are supported by macrophages during skin repair[J]. Science, 2018, 362(6417): eaar2971.
|
4 |
Kuppe C, Ibrahim MM, Kranz J, et al. Decoding myofibroblast origins in human kidney fibrosis[J]. Nature, 2021, 589(7841): 281-286.
|
5 |
Tang PM, Nikolic-Paterson DJ, Lan HY. Macrophages: versatile players in renal inflammation and fibrosis[J]. Nat Rev Nephrol, 2019, 15(3): 144-158.
|
6 |
Hewitson TD, Holt SG, Smith ER. Progression of tubulointerstitial fibrosis and the chronic kidney disease phenotype - role of risk factors and epigenetics[J]. Front Pharmacol, 2017, 8: 520.
|
7 |
Wang M, Xu H, Li Y, et al. Exogenous bone marrow derived-putative endothelial progenitor cells attenuate ischemia reperfusion-induced vascular injury and renal fibrosis in mice dependent on pericytes[J]. Theranostics, 2020, 10(26): 12144-12157.
|
8 |
Tanaka S, Portilla D, Okusa MD. Role of perivascular cells in kidney homeostasis, inflammation, repair and fibrosis[J]. Nat Rev Nephrol, 2023,19(11): 721-732.
|
9 |
Jordan NP, Tingle SJ, Shuttleworth VG, et al. MiR-126-3p is dynamically regulated in endothelial-to-mesenchymal transition during fibrosis[J]. Int J Mol Sci, 2021, 22(16): 8629.
|
10 |
Vierhout M, Ayoub A, Naiel S, et al. Monocyte and macrophage derived myofibroblasts: is it fate? A review of the current evidence[J]. Wound Repair Regen, 2021, 29(4): 548-562.
|
11 |
LeBleu VS, Taduri G, O′Connell J, et al. Origin and function of myofibroblasts in kidney fibrosis[J]. Nat Med, 2013, 19(8): 1047-1053.
|
12 |
Meng XM, Wang S, Huang XR, et al. Inflammatory macrophages can transdifferentiate into myofibroblasts during renal fibrosis[J]. Cell Death Dis, 2016, 7(12): e2495.
|
13 |
Wang S, Meng XM, Ng YY, et al. TGF-β Smad3 signalling regulates the transition of bone marrow-derived macrophages into myofibroblasts during tissue fibrosis[J]. Oncotarget, 2016, 7(8): 8809-8822.
|
14 |
Wei J, Xu Z, Yan X. The role of the macrophage-to-myofibroblast transition in renal fibrosis[J]. Front Immunol, 2022, 13: 934377.
|
15 |
Wang YY, Jiang H, Pan J, et al. Macrophage-to-myofibroblast transition contributes to interstitial fibrosis in chronic renal allograft injury[J]. J Am Soc Nephrol, 2017, 28(7): 2053-2067.
|
16 |
Locati M, Curtale G, Mantovani A. Diversity, mechanisms, and significance of macrophage plasticity[J]. Annu Rev Pathol, 2020, 15: 123-147.
|
17 |
Christofides A, Strauss L, Yeo A, et al. The complex role of tumor-infiltrating macrophages[J]. Nat Immunol, 2022, 23(8): 1148-1156.
|
18 |
Li X, Wu J, Zhu S, et al. Intragraft immune cells: accomplices or antagonists of recipient-derived macrophages in allograft fibrosis?[J]. Cell Mol Life Sci, 2023, 80(7): 195.
|
19 |
Liu B, Jiang J, Liang H, et al. Natural killer T cell/IL-4 signaling promotes bone marrow-derived fibroblast activation and M2 macrophage-to-myofibroblast transition in renal fibrosis[J]. Int Immunopharmacol, 2021, 98: 107907.
|
20 |
Liang H, Liu B, Gao Y, et al. Jmjd3/IRF4 axis aggravates myeloid fibroblast activation and m2 macrophage to myofibroblast transition in renal fibrosis[J]. Front Immunol, 2022, 13: 978262.
|
21 |
Qiang P, Hao J, Yang F, et al. Esaxerenone inhibits the macrophage-to-myofibroblast transition through mineralocorticoid receptor/TGF-beta1 pathway in mice induced with aldosterone[J]. Front Immunol, 2022, 13: 948658.
|
22 |
Su J, Morgani SM, David CJ, et al. TGF-β orchestrates fibrogenic and developmental EMTs via the RAS effector RREB1[J]. Nature, 2020, 577(7791): 566-571.
|
23 |
Yuan Q, Tang B, Zhang C. Signaling pathways of chronic kidney diseases, implications for therapeutics[J]. Signal Transduct Target Ther, 2022, 7(1): 182.
|
24 |
Zhang Y, Jin D, Kang X, et al. Signaling pathways involved in diabetic renal fibrosis[J]. Front Cell Dev Biol, 2021, 9: 696542.
|
25 |
Zou LL, Li JR, Li H, et al. TGF-β isoforms inhibit hepatitis C virus propagation in transforming growth factor beta/SMAD protein signalling pathway dependent and independent manners[J]. J Cell Mol Med, 2021, 25(7): 3498-3510.
|
26 |
Gifford CC, Tang J, Costello A, et al. Negative regulators of TGF-β1 signaling in renal fibrosis; pathological mechanisms and novel therapeutic opportunities[J]. Clin Sci (Lond), 2021, 135(2): 275-303.
|
27 |
Vander Ark A, Cao J, Li X. TGF-β receptors: in and beyond TGF-β signaling[J]. Cell Signal, 2018, 52: 112-120.
|
28 |
Lin Z, Chen A, Cui H, et al. Renal tubular epithelial cell necroptosis promotes tubulointerstitial fibrosis in patients with chronic kidney disease[J]. FASEB J, 2022, 36(12): e22625.
|
29 |
Xiao Y, Jiang X, Peng C, et al. BMP-7/Smads-induced inhibitor of differentiation 2 (Id2) upregulation and Id2/Twist interaction was involved in attenuating diabetic renal tubulointerstitial fibrosis[J]. Int J Biochem Cell Biol, 2019, 116: 105613.
|
30 |
Chen J, Xia Y, Lin X, et al. Smad3 signaling activates bone marrow-derived fibroblasts in renal fibrosis[J]. Lab Invest, 2014, 94(5): 545-556.
|
31 |
Wang Y, Li Y, Chen Z, et al. GSDMD-dependent neutrophil extracellular traps promote macrophage-to-myofibroblast transition and renal fibrosis in obstructive nephropathy[J]. Cell Death Dis, 2022, 13(8): 693.
|
32 |
Espinosa Gonzalez M, Volk-Draper L, Bhattarai N, et al. Th2 cytokines IL-4, IL-13, and IL-10 promote differentiation of pro-lymphatic progenitors derived from bone marrow myeloid precursors[J]. Stem Cells Dev, 2022, 31(11-12): 322-333.
|
33 |
Yan J, Zhang Z, Yang J, et al. JAK3/STAT6 Stimulates bone marrow-derived fibroblast activation in renal fibrosis[J]. J Am Soc Nephrol, 2015, 26(12): 3060-3071.
|
34 |
Zhou X, Chen H, Hu Y, et al. Enhancer of zeste homolog 2 promotes renal fibrosis after acute kidney injury by inducing epithelial-mesenchymal transition and activation of M2 macrophage polarization[J]. Cell Death Dis, 2023, 14(4): 253.
|
35 |
Lee YJ, Kim K, Kim M, et al. Inhibition of STAT6 activation by AS1517499 inhibits expression and activity of PPARγ in macrophages to resolve acute inflammation in mice[J]. Biomolecules, 2022, 12(3): 447.
|
36 |
Yuan T, Xia Y, Pan S, et al. STAT6 promoting oxalate crystal deposition-induced renal fibrosis by mediating macrophage-to-myofibroblast transition via inhibiting fatty acid oxidation[J]. Inflamm Res, 2023, 72(12): 2111-2126.
|
37 |
Shu H, Wang Y, Zhang H, et al. The role of the SGK3/TOPK signaling pathway in the transition from acute kidney injury to chronic kidney disease[J]. Front Pharmacol, 2023, 14: 1169054.
|
38 |
Feng Y, Guo F, Xia Z, et al. Inhibition of fatty acid-binding protein 4 attenuated kidney fibrosis by mediating macrophage-to-myofibroblast transition[J]. Front Immunol, 2020, 11: 566535.
|
39 |
Chen J, Tang Y, Zhong Y, et al. P2Y12 inhibitor clopidogrel inhibits renal fibrosis by blocking macrophage-to-myofibroblast transition[J]. Mol Ther, 2022, 30(9): 3017-3033.
|
40 |
Tang PM, Zhang YY, Xiao J, et al. Neural transcription factor Pou4f1 promotes renal fibrosis via macrophage-myofibroblast transition[J]. Proc Natl Acad Sci U S A, 2020, 117(34): 20741-20752.
|
41 |
Xiong Y, Chang Y, Hao J, et al. Eplerenone attenuates fibrosis in the contralateral kidney of UUO rats by preventing macrophage-to-myofibroblast transition[J]. Front Pharmacol, 2021, 12: 620433.
|
42 |
Luo L, Wang S, Hu Y, et al. Precisely regulating M2 subtype macrophages for renal fibrosis resolution[J]. ACS Nano, 2023, 17(22): 22508-22526.
|
43 |
Feng Y, Guo F, Mai H, et al. Pterostilbene, a bioactive component of blueberries, alleviates renal interstitial fibrosis by inhibiting macrophage-myofibroblast transition[J]. Am J Chin Med, 2020, 48(7): 1715-1729.
|
44 |
Yunzhao X, Lingjin L, Ziqian L, et al. Huoxue Jiedu Huayu recipe alleviates contralateral renal fibrosis in unilateral ureteral obstruction rats by inhibiting the transformation of macrophages to myofibroblast[J]. J Tradit Chin Med, 2023, 43(1): 105-112.
|
45 |
Xianyuan L, Wei Z, Yaqian D, et al. Anti-renal fibrosis effect of asperulosidic acid via TGF-β1/smad2/smad3 and NF-κB signaling pathways in a rat model of unilateral ureteral obstruction[J]. Phytomedicine, 2019, 53: 274-285.
|