1 |
Zhao J, Zhu W, Mao Y, et al. Unignored intracellular journey and biomedical applications of extracellular vesicles[J]. Adv Drug Deliv Rev, 2024: 115388.
|
2 |
Ko SY, Lee W, Naora H. Harnessing microRNA-enriched extracellular vesicles for liquid biopsy[J]. Front Mol Biosci, 2024, 11: 1356780.
|
3 |
王玺惠,陈依,俞卫锋. 凋亡胞外囊泡在炎症与肿瘤发生、发展中的作用研究进展[J]. 浙江医学,2023,45(10): 1116-1120.
|
4 |
史婷婷,张润兵,伍杨,等. 不同来源的细胞外囊泡在肝细胞癌发生进展中的作用[J]. 临床肝胆病杂志,2024,40(6): 1264-1268.
|
5 |
Gołębiewska JE, Wardowska A, Pietrowska M, et al. Small extracellular vesicles in transplant rejection [J]. Cells, 2021, 10(11): 10112989
|
6 |
Zeng F, Chen Z, Chen R, et al. Graft-derived extracellular vesicles transported across subcapsular sinus macrophages elicit B cell alloimmunity after transplantation[J]. Sci Transl Med, 2021, 13(585): eabb0122.
|
7 |
Ashcroft J, Leighton P, Elliott TR, et al. Extracellular vesicles in kidney transplantation: a state-of-the-art review [J]. Kidney Int, 2022, 101(3): 485-497.
|
8 |
Welsh JA, Goberdhan DCI, O′driscoll L, et al. Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches [J]. J Extracell Vesicles, 2024, 13(2): e12404.
|
9 |
Kalluri R, Lebleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478): eaau6977.
|
10 |
Caruso S, Poon IKH. Apoptotic cell-derived extracellular vesicles: more than just debris[J]. Front Immunol, 2018, 9:1486.
|
11 |
Gardiner C, Di Vizio D, Sahoo S, et al. Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey[J]. J Extracell Vesicles, 2016, 5:32945.
|
12 |
Monguio-Tortajada M, Galvez-Monton C, Bayes-Genis A, et al. Extracellular vesicle isolation methods: rising impact of size-exclusion chromatography[J]. Cell Mol Life Sci, 2019, 76(12): 2369-2382.
|
13 |
Sidhom K, Obi PO, Saleem A. A review of exosomal isolation methods: is size exclusion chromatography the best option?[J]. Int J Mol Sci, 2020, 21(18): 21186466.
|
14 |
Koiffman N, Biran I, Aharon A, et al. A direct-imaging cryo-EM study of shedding extracellular vesicles from leukemic monocytes [J]. J Struct Biol, 2017, 198(3): 177-185.
|
15 |
Thery C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines[J]. J Extracell Vesicles, 2018, 7(1): 1535750.
|
16 |
Cuadrado-Payan E, Ramirez-Bajo MJ, Banon-Maneus E, et al. Physiopathological role of extracellular vesicles in alloimmunity and kidney transplantation and their use as biomarkers[J]. Front Immunol, 2023, 14:1154650.
|
17 |
Abinti M, Favi E, Alfieri CM, et al. Update on current and potential application of extracellular vesicles in kidney transplantation[J]. Am J Transplant, 2023, 23(11): 1673-1693.
|
18 |
Turco AE, Lam W, Rule AD, et al. Specific renal parenchymal-derived urinary extracellular vesicles identify age-associated structural changes in living donor kidneys[J]. J Extracell Vesicles, 2016, 5:29642.
|
19 |
Oshikawa-Hori S, Yokota-Ikeda N, Sonoda H, et al. Reduced urinary release of AQP1- and AQP2-bearing extracellular vesicles in patients with advanced chronic kidney disease[J]. Physiol Rep, 2021, 9(17): e15005.
|
20 |
Ines Lozano-Ramos S, Bancu I, Carreras-Planella L, et al. Molecular profile of urine extracellular vesicles from normo-functional kidneys reveal minimal differences between living and deceased donors [J]. BMC Nephrol, 2018, 19(1):189.
|
21 |
Gremmels H, De Jong OG, Toorop RJ, et al. The small RNA repertoire of small extracellular vesicles isolated from donor kidney preservation fluid provides a source for biomarker discovery for organ quality and posttransplantation graft function[J]. Transplant Direct, 2019, 5(9): e484.
|
22 |
Alvarez S, Suazo C, Boltansky A, et al. Urinary exosomes as a source of kidney dysfunction biomarker in renal transplantation[J]. Transplant Proc, 2013, 45(10): 3719-3723.
|
23 |
Dimuccio V, Ranghino A, Barbato LP, et al. Urinary CD133+ extracellular vesicles are decreased in kidney transplanted patients with slow graft function and vascular damage[J]. PLoS One, 2014, 9(8):e104490.
|
24 |
Asvapromtada S, Sonoda H, Kinouchi M, et al. Characterization of urinary exosomal release of aquaporin-1 and-2 after renal ischemia-reperfusion in rats[J]. Am J Physiol Renal Physiol, 2018, 314(4): F584-F601.
|
25 |
Wang J, Li X, Wu X, et al. Expression profiling of exosomal miRNAs derived from the peripheral blood of kidney recipients with DGF using high-throughput sequencing[J]. Biomed Res Int, 2019, 2019: 1759697.
|
26 |
Al-Nedawi K, Haas-Neill S, Gangji A, et al. Circulating microvesicle protein is associated with renal transplant outcome[J]. Transpl Immunol, 2019, 55: 101210.
|
27 |
Rutman AK, Negi S, Saberi N, et al. Extracellular vesicles from kidney allografts express miR-218-5p and alter Th17/Treg ratios[J]. Front Immunol, 2022, 13:784374.
|
28 |
Park J, Lin HY, Assaker JP, et al. Integrated kidney exosome analysis for the detection of kidney transplant rejection[J]. Acs Nano, 2017, 11(11): 11041-11046.
|
29 |
Takada Y, Kamimura D, Jiang JJ, et al. Increased urinary exosomal SYT17 levels in chronic active antibody-mediated rejection after kidney transplantation via the IL-6 amplifier[J]. Int Immunol, 2020, 32(10): 653-662.
|
30 |
El Fekih R, Hurley J, Tadigotla V, et al. Discovery and validation of a urinary exosome mRNA signature for the diagnosis of human kidney transplant rejection[J]. J Am Soc Nephrol, 2021, 32(4): 994-1004.
|
31 |
Lim JH, Lee CH, Kim KY, et al. Novel urinary exosomal biomarkers of acute T cell-mediated rejection in kidney transplant recipients: A cross-sectional study[J]. PloS One, 2018, 13(9): e0204204.
|
32 |
Sigdel TK, Ng YW, Lee S, et al. Perturbations in the urinary exosome in transplant rejection[J]. Front Med (Lausanne), 2014, 1:57.
|
33 |
Tower CM, Reyes M, Nelson K, et al. Plasma C4d+ endothelial microvesicles increase in acute antibody-mediated rejection[J]. Transplantation, 2017, 101(9): 2235-2243.
|
34 |
Zhang H, Huang E, Kahwaji J, et al. Plasma exosomes from HLA-sensitized kidney transplant recipients contain mRNA transcripts which predict development of antibody-mediated rejection[J]. Transplantation, 2017, 101(10): 2419-2428.
|
35 |
Sharma M, Ravichandran R, Bansal S, et al. Tissue-associated self-antigens containing exosomes: role in allograft rejection[J]. Hum Immunol, 2018, 79(9): 653-658.
|
36 |
Saejong S, Townamchai N, Somparn P, et al. MicroRNA-21 in plasma exosome, but not from whole plasma, as a biomarker for the severe interstitial fibrosis and tubular atrophy (IF/TA) in post-renal transplantation[J]. Asian Pac J Allergy Immunol, 2022, 40(1): 94-102.
|
37 |
Chen Y, Han X, Sun Y, et al. A circulating exosomal microRNA panel as a novel biomarker for monitoring post-transplant renal graft function[J]. J Cell Mol Med, 2020, 24(20): 12154-12163.
|
38 |
Carreras-Planella L, Cucchiari D, Canas L, et al. Urinary vitronectin identifies patients with high levels of fibrosis in kidney grafts[J]. J Nephrol, 2021, 34(3): 861-874.
|
39 |
雷嘉豪,缪炳文,缪辉来. 细胞外囊泡与非编码RNA在肝缺血再灌注损伤中作用的研究进展[J]. 肝胆胰外科杂志,2023,35(7):439-443.
|
40 |
Lazana I, Vassilopoulos G. A 'waste product' to save the day in the field of transplantation: the evolving potential of extracellular vesicles[J]. Immunology, 2022, 167(2): 154-164.
|
41 |
Lindoso RS, Collino F, Bruno S, et al. Extracellular vesicles released from mesenchymal stromal cells modulate miRNA in renal tubular cells and inhibit ATP depletion injury[J]. Stem Cells Dev, 2014, 23(15): 1809-1819.
|
42 |
Zou XY, Zhang GY, Cheng ZL, et al. Microvesicles derived from human Wharton′s Jelly mesenchymal stromal cells ameliorate renal ischemia-reperfusion injury in rats by suppressing CX3CL1[J]. Stem Cell Res Ther, 2014, 5(2): 40.
|
43 |
Vinas JL, Burger D, Zimpelmann J, et al. Transfer of microRNA-486-5p from human endothelial colony forming cell-derived exosomes reduces ischemic kidney injury[J]. Kidney Int, 2016, 90(6): 1238-1250.
|
44 |
Pang P, Abbott M, Chang SL, et al. Human vascular progenitor cells derived from renal arteries are endothelial-like and assist in the repair of injured renal capillary networks[J]. Kidney Int, 2017, 91(1): 129-143.
|
45 |
Dominguez JH, Liu Y, Gao H, et al. Renal tubular cell-derived extracellular vesicles accelerate the recovery of established renal ischemia reperfusion injury[J]. J Am Soc Nephrol, 2017, 28(12): 3533-3544.
|
46 |
Pan W, Li S, Li K, et al. Mesenchymal stem cells and extracellular vesicles: therapeutic potential in organ transplantation[J]. Stem Cells Int, 2024, 2024:2043550.
|
47 |
Gregorini M, Corradetti V, Pattonieri EF, et al. Perfusion of isolated rat kidney with mesenchymal stromal cells/extracellular vesicles prevents ischaemic injury[J]. J Cell Mol Med, 2017, 21(12): 3381-3393.
|
48 |
Grignano MA, Bruno S, Viglio S, et al. CD73-adenosinergic axis mediates the protective effect of extracellular vesicles derived from mesenchymal stromal cells on ischemic renal damage in a rat model of donation after circulatory death[J]. Int J Mol Sci, 2022, 23(18): 10681.
|
49 |
Rampino T, Gregorini M, Germinario G, et al. Extracellular vesicles derived from mesenchymal stromal cells delivered during hypothermic oxygenated machine perfusion repair ischemic/reperfusion damage of kidneys from extended criteria donors[J]. Biology, 2022, 11(3): 350.
|
50 |
Burrello J, Monticone S, Gai C, et al. Stem cell-derived extracellular vesicles and immune-modulation [J]. Front Cell Dev Biol, 2016, 4: 83.
|
51 |
Koch M, Lemke A, Lange C. Extracellular Vesicles from MSC modulate the immune response to renal allografts in a MHC disparate rat model [J]. Stem Cells Int, 2015, 2015: 486141.
|
52 |
Wu XQ, Yan TZ, Wang ZW, et al. BM-MSCs-derived microvesicles promote allogeneic kidney graft survival through enhancing micro-146a expression of dendritic cells[J]. Immunol Lett, 2017, 191:55-62.
|
53 |
Jose Ramirez-Bajo M, Rovira J, Lazo-Rodriguez M, et al. Impact of mesenchymal stromal cells and their extracellular vesicles in a rat model of kidney rejection[J]. Front Cell Dev Biol, 2020, 8: 10.
|
54 |
Fang Y, Bouari S, Hoogduijn MJ, et al. Therapeutic efficacy of extracellular vesicles to suppress allograft rejection in preclinical kidney transplantation models: a systematic review and meta-analysis[J]. Transplant Rev (Orlando), 2022, 36(4): 100714.
|
55 |
Peche H, Renaudin K, Beriou G, et al. Induction of tolerance by exosomes and short-term immunosuppression in a fully MHC-mismatched rat cardiac allograft model[J]. Am J Transplant, 2006, 6(7): 1541-1550.
|
56 |
Pang XL, Wang ZG, Liu L, et al. Immature dendritic cells derived exosomes promotes immune tolerance by regulating T cell differentiation in renal transplantation[J]. Aging (Albany NY), 2019, 11(20): 8911-8924.
|
57 |
Yu X, Huang C, Song B, et al. CD4+ CD25+ regulatory T cells-derived exosomes prolonged kidney allograft survival in a rat model [J]. Cell Immunol, 2013, 285(1-2): 62-68.
|
58 |
Ezzelarab MB, Raich-Regue D, Lu L, et al. Renal allograft survival in nonhuman primates infused with donor antigen-pulsed autologous regulatory dendritic cells[J]. Am J Transplant, 2017, 17(6): 1476-1489.
|
59 |
Aiello S, Rocchetta F, Longaretti L, et al. Extracellular vesicles derived from T regulatory cells suppress T cell proliferation and prolong allograft survival[J]. Sci Rep, 2017, 7(1): 11518.
|
60 |
Kim S, Lee SA, Yoon H, et al. Exosome-based delivery of super-repressor IκBα ameliorates kidney ischemia-reperfusion injury [J]. Kidney Int, 2021, 100(3): 570-584.
|
61 |
Qian Z, Zhang X, Huang J, et al. ROS-responsive MSC-derived exosome mimetics carrying MHY1485 alleviate renal ischemia reperfusion injury through multiple mechanisms[J]. ACS Omega, 2024, 9(23): 24853-24863.
|
62 |
Lin J, Lv J, Yu S, et al. Transcript engineered extracellular vesicles alleviate alloreactive dynamics in renal transplantation[J]. Adv Sci (Weinh), 2022, 9(31): e2202633.
|
63 |
Tsai HI, Wu Y, Liu X, et al. Engineered small extracellular vesicles as a FGL1/PD-L1 dual-targeting delivery system for alleviating immune rejection[J]. Adv Sci (Weinh), 2022, 9(3): e2102634.
|