1 |
Sakuma T,Woltjen K. Nuclease-mediated genome editing: At the front-line of functional genomics technology[J]. Dev Growth Differ, 2014, 56(1): 2-13.
|
2 |
Lutz AJ,Li P,Estrada JL, et al. Double knockout pigs deficient in N-glycolylneuraminic acid and galactose alpha-1, 3-galactose reduce the humoral barrier to xenotransplantation[J]. Xenotransplantation, 2013, 20(1): 27-35.
|
3 |
Nicolas A,Rossignol JL. Mechanisms for homologous recombination[J]. Nature, 1985, 314(6008): 230.
|
4 |
Swarthout JT,Raisinghani M,Cui X. Zinc finger nucleases: A new era for transgenic animals[J]. Ann Neurosci, 2011, 18(1): 25-28.
|
5 |
LaFountaine JS,Fathe K,Smyth HD. Delivery and therapeutic applications of gene editing technologies ZFNs, TALENs, and CRISPR/Cas9[J]. Int J Pharm, 2015, 494(1): 180-194.
|
6 |
Geurts AM,Cost GJ,Freyvert Y, et al. Knockout rats via embryo microinjection of zinc-finger nucleases[J]. Science, 2009, 325(5939): 433.
|
7 |
Yao J,Huang J,Zhao J. Genome editing revolutionize the creation of genetically modified pigs for modeling human diseases[J]. Hum Genet, 2016, 135(9): 1093-1105.
|
8 |
Christian M,Cermak T,Doyle EL, et al. Targeting DNA double-strand breaks with TAL effector nucleases[J]. Genetics, 2010, 186(2): 757-761.
|
9 |
Hockemeyer D,Wang H,Kiani S, et al. Genetic engineering of human pluripotent cells using TALE nucleases[J]. Nat Biotechnol, 2011, 29(8): 731-734.
|
10 |
Jinek M,Chylinski K,Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816-821.
|
11 |
Wilmut I,Schnieke AE,McWhir J, et al. Viable offspring derived from fetal and adult mammalian cells[J]. Nature, 1997, 385(6619): 810-813.
|
12 |
Kobayashi T,Cooper DK. Anti-Gal, alpha-Gal epitopes, and xenotransplantation[J]. Subcell Biochem, 1999, 32: 229-257.
|
13 |
Lai L,Kolber-Simonds D,Park KW, et al. Production of alpha-1, 3-galactosyltransferase knockout pigs by nuclear transfer cloning[J]. Science, 2002, 295(5557): 1089-1092.
|
14 |
Michel SG,Madariaga ML,Villani V, et al. Current progress in xenotransplantation and organ bioengineering[J]. Int J Surg, 2015, 13: 239-244.
|
15 |
Phelps CJ,Ball SF,Vaught TD, et al. Production and characterization of transgenic pigs expressing porcine CTLA4-Ig[J]. Xenotransplantation, 2009, 16(6): 477-485.
|
16 |
Cooper DK,Ekser B,Ramsoondar J, et al. The role of genetically engineered pigs in xenotransplantation research[J]. J Pathol, 2016, 238(2): 288-299.
|
17 |
Hara H,Witt W,Crossley T, et al. Human dominant-negative class Ⅱ transactivator transgenic pigs-effect on the human anti-pig T-cell immune response and immune status[J]. Immunology, 2013, 140(1): 39-46.
|
18 |
Miwa Y,Yamamoto K,Onishi A, et al. Potential value of human thrombomodulin and DAF expression for coagulation control in pig-to-human xenotransplantation[J]. Xenotransplantation, 2010, 17(1): 26-37.
|
19 |
Ekser B,Ezzelarab M,Hara H, et al. Clinical xenotransplantation: the next medical revolution?[J]. Lancet, 2012, 379(9816): 672-683.
|
20 |
Petersen B,Ramackers W,Tiede A, et al. Pigs transgenic for human thrombomodulin have elevated production of activated protein C[J]. Xenotransplantation, 2009, 16(6): 486-495.
|
21 |
Lee HJ,Lee BC,Kim YH, et al. Characterization of transgenic pigs that express human decay accelerating factor and cell membrane-tethered human tissue factor pathway inhibitor[J]. Reprod Domest Anim, 2011, 46(2): 325-332.
|
22 |
Choi K,Shim J,Ko N, et al. Production of heterozygous alpha 1, 3-galactosyltransferase (GGTA1) knock-out transgenic miniature pigs expressing human CD39[J]. Transgenic Res, 2017, 26(2): 209-224.
|
23 |
Yazaki S,Iwamoto M,Onishi A, et al. Production of cloned pigs expressing human thrombomodulin in endothelial cells[J]. Xenotransplantation, 2012, 19(2): 82-91.
|
24 |
Baldan N,Rigotti P,Calabrese F, et al. Ureteral stenosis in HDAF pig-to-primate renal xenotransplantation: a phenomenon related to immunological events?[J]. Am J Transplant, 2004, 4(4): 475-481.
|
25 |
Higginbotham L,Mathews D,Breeden CA, et al. Pre-transplant antibody screening and anti-CD154 costimulation blockade promote long-term xenograft survival in a pig-to-primate kidney transplant model[J]. Xenotransplantation, 2015, 22(3): 221-230.
|
26 |
Iwase H,Liu H,Wijkstrom M, et al. Pig kidney graft survival in a baboon for 136 days: longest life-supporting organ graft survival to date[J]. Xenotransplantation, 2015, 22(4): 302-309.
|
27 |
Cozzi E,Simioni P,Boldrin M, et al. Effects of long-term administration of high-dose recombinant human antithrombin in immunosuppressed primate recipients of porcine xenografts[J]. Transplantation, 2005, 80(10): 1501-1510.
|
28 |
Cowan PJ,Aminian A,Barlow H, et al. Protective effects of recombinant human antithrombin Ⅲ in pig-to-primate renal xenotransplantation[J]. Am J Transplant, 2002, 2(6): 520-525.
|
29 |
Iwase H,Ezzelarab MB,Ekser B, et al. The role of platelets in coagulation dysfunction in xenotransplantation, and therapeutic options[J]. Xenotransplantation, 2014, 21(3): 201-220.
|
30 |
Ramirez P,Chavez R,Majado M, et al. Life-supporting human complement regulator decay accelerating factor transgenic pig liver xenograft maintains the metabolic function and coagulation in the nonhuman primate for up to 8 days[J]. Transplantation, 2000, 70(7): 989-998.
|
31 |
Ekser B,Long C,Echeverri GJ, et al. Impact of thrombocytopenia on survival of baboons with genetically modified pig liver transplants: clinical relevance[J]. Am J Transplant, 2010, 10(2): 273-285.
|
32 |
Ekser B,Echeverri GJ,Hassett AC, et al. Hepatic function after genetically engineered pig liver transplantation in baboons[J]. Transplantation, 2010, 90(5): 483-493.
|
33 |
Yeh H,Machaidze Z,Wamala I, et al. Increased transfusion-free survival following auxiliary pig liver xenotransplantation[J]. Xenotransplantation, 2014, 21(5): 454-464.
|
34 |
Kuwaki K,Tseng YL,Dor FJ, et al. Heart transplantation in baboons using alpha 1, 3-galactosyltransferase gene-knockout pigs as donors: initial experience[J]. Nat Med, 2005, 11(1): 29-31.
|
35 |
Mañez R,Lopez-Pelaez E,Centeno A, et al. Transgenic expression in pig hearts of both human decay-accelerating factor and human membrane cofactor protein does not provide an additional benefit to that of human decay-accelerating factor alone in pig-to-baboon xenotransplantation[J]. Transplantation, 2004, 78(6): 930-933.
|
36 |
McGregor CG,Ricci D,Miyagi N, et al. Human CD55 expression blocks hyperacute rejection and restricts complement activation in Gal knockout cardiac xenografts[J]. Transplantation, 2012, 93(7): 686-692.
|
37 |
Estrada JL,Martens G,Li P, et al. Evaluation of human and non-human primate antibody binding to pig cells lacking GGTA1/CMAH/β4GalNT2 genes[J]. Xenotransplantation, 2015, 22(3): 194-202.
|
38 |
Byrne GW,Schirmer JM,Fass DN, et al. Warfarin or low-molecular-weight heparin therapy does not prolong pig-to-primate cardiac xenograft function[J]. Am J Transplant, 2005, 5(5): 1011-1120.
|
39 |
Cardona K,Korbutt GS,Milas Z, et al. Long-term survival of neonatal porcine islets in nonhuman primates by targeting costimulation pathways[J]. Nat Med, 2006, 12(3): 304-306.
|
40 |
Hering BJ,Wijkstrom M,Graham ML, et al. Prolonged diabetes reversal after intraportal xenotransplantation of wild-type porcine islets in immunosuppressed nonhuman primates[J]. Nat Med, 2006, 12(3): 301-303.
|
41 |
Shin JS,Kim JM,Kim JS, et al. Long-term control of diabetes in immunosuppressed nonhuman primates (NHP) by the transplantation of adult porcine islets[J]. Am J Transplant, 2015, 15(11): 2837-2850.
|
42 |
van der Windt DJ,Bottino R,Casu A, et al. Long-term controlled normoglycemia in diabetic non-human primates after transplantation with hCD46 transgenic porcine islets[J]. Am J Transplant, 2009, 9(12): 2716-2726.
|
43 |
Bottino R,Trucco M. Use of genetically-engineered pig donors in islet transplantation[J]. World J Transplant, 2015, 5(4): 243-250.
|
44 |
Bottino R,Wijkstrom M,van der Windt DJ, et al. Pig-to-monkey islet xenotransplantation using multi-transgenic pigs[J]. Am J Transplant, 2014, 14(10): 2275-2287.
|
45 |
Diswall M,Angeström J,Schuurman HJ, et al. Studies on glycolipid antigens in small intestine and pancreas from alpha1, 3-galactosyltransferase knockout miniature swine[J]. Transplantation, 2007, 84(10): 1348-1356.
|
46 |
Choi HJ,Lee JJ,Kim DH, et al. Blockade of CD40-CD154 costimulatory pathway promotes long-term survival of full-thickness porcine corneal grafts in nonhuman primates: clinically applicable xenocorneal transplantation[J]. Am J Transplant, 2015, 15(3): 628-641.
|
47 |
Chen Y,Stewart JM,Gunthart M, et al. Xenoantibody response to porcine islet cell transplantation using GTKO, CD55, CD59, and fucosyltransferase multiple transgenic donors[J]. Xenotransplantation, 2014, 21(3): 244-253.
|
48 |
Schmidt P,Goto M,Le Mauff B, et al. Adenovirus-mediated expression of human CD55 or CD59 protects adult porcine islets from complement-mediated cell lysis by human serum[J]. Transplantation, 2003, 75(5): 697-702.
|
49 |
Wijkstrom M,Bottino R,Iwase H, et al. Glucose metabolism in pigs expressing human genes under an insulin promoter[J]. Xenotransplantation, 2015, 22(1): 70-79.
|
50 |
Thompson P,Badell IR,Lowe M, et al. Islet xenotransplantation using gal-deficient neonatal donors improves engraftment and function[J]. Am J Transplant, 2011, 11(12): 2593-2602.
|
51 |
Lee JH,Lee HJ,Nahm KM, et al. Effects of combined expression of human complement regulatory proteins and H-transferase on the inhibition of complement-mediated cytolysis in porcine embryonic fibroblasts[J]. Transplant Proc, 2006, 38(5): 1618-1621.
|
52 |
Park JY,Park MR,Bui HT, et al. α1, 3-galactosyltransferase deficiency in germ-free miniature pigs increases N-glycolylneuraminic acids as the xenoantigenic determinant in pig-human xenotransplantation[J]. Cell Reprogram, 2012, 14(4): 353-363.
|
53 |
Kumagai-Braesch M,Ekberg H,Wang F, et al. Anti-LFA-1 improves pig islet xenograft function in diabetic mice when long-term acceptance is induced by CTLA4Ig/anti-CD40L[J]. Transplantation, 2007, 83(9): 1259-1267.
|
54 |
Klymiuk N,van Buerck L,Bähr A, et al. Xenografted islet cell clusters from INSLEA29Y transgenic pigs rescue diabetes and prevent immune rejection in humanized mice[J]. Diabetes, 2012, 61(6): 1527-1532.
|
55 |
Iwase H,Ekser B,Satyananda V, et al. Initial in vivo experience of pig artery patch transplantation in baboons using mutant MHC (CIITA-DN) pigs[J]. Transpl Immunol, 2015, 32(2): 99-108.
|
56 |
Yeom HJ,Koo OJ,Yang J, et al. Generation and characterization of human heme oxygenase-1 transgenic pigs[J]. PLoS One, 2012, 7(10): e46646.
|
57 |
Oropeza M,Petersen B,Carnwath JW, et al. Transgenic expression of the human A20 gene in cloned pigs provides protection against apoptotic and inflammatory stimuli[J]. Xenotransplantation, 2009, 16(6): 522-534.
|
58 |
Vabres B,Le Bas-Bernardet S,Riochet D, et al. hCTLA4-Ig transgene expression in keratocytes modulates rejection of corneal xenografts in a pig to non-human primate anterior lamellar keratoplasty model[J]. Xenotransplantation, 2014, 21(5): 431-443.
|
59 |
Hara H,Cooper DK. The immunology of corneal xenotransplantation: a review of the literature[J]. Xenotransplantation, 2010, 17(5): 338-349.
|
60 |
Cohen D,Miyagawa Y,Mehra R, et al. Distribution of non-gal antigens in pig cornea: relevance to corneal xenotransplantation[J]. Cornea, 2014, 33(4): 390-397.
|
61 |
Hara H,Koike N,Long C, et al. Initial in vitro investigation of the human immune response to corneal cells from genetically engineered pigs[J]. Invest Ophthalmol Vis Sci, 2011, 52(8): 5278-5286.
|