切换至 "中华医学电子期刊资源库"

中华移植杂志(电子版) ›› 2017, Vol. 11 ›› Issue (02) : 119 -124. doi: 10.3877/cma.j.issn.1674-3903.2017.02.013

所属专题: 文献

综述

基因修饰猪在异种器官移植中的研究进展
陈鹏飞1, 聂惠蓉2, 戴一凡3, 蔡志明2, 牟丽莎1,()   
  1. 1. 510275 广州,中山大学中山医学院;518037 深圳市第二人民医院 异种器官移植医疗工程研究与开发中心
    2. 518037 深圳市第二人民医院 异种器官移植医疗工程研究与开发中心
    3. 210029 南京医科大学 江苏省异种器官移植重点实验室
  • 收稿日期:2016-11-21 出版日期:2017-05-25
  • 通信作者: 牟丽莎
  • 基金资助:
    国家自然科学基金(81501385); 深圳市科技计划基础研究项目(JCYJ20150330102720149); 深圳市科创委学科布局项目(JCYJ20160229204849975); 深圳市科创委企业工程中心项目(GCZX2015043017281705)

The research progress of genetically modified pigs in xenotransplantation

Pengfei Chen1, Huirong Nie2, Yifan Dai3, Zhiming Cai2, Lisha Mou1,()   

  1. 1. Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China; Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second Peoples′ Hospital, Shenzhen 518037, China
    2. Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Second Peoples′ Hospital, Shenzhen 518037, China
    3. Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 210029, China
  • Received:2016-11-21 Published:2017-05-25
  • Corresponding author: Lisha Mou
  • About author:
    Corresponding author: Mou Lisha, Email:
引用本文:

陈鹏飞, 聂惠蓉, 戴一凡, 蔡志明, 牟丽莎. 基因修饰猪在异种器官移植中的研究进展[J]. 中华移植杂志(电子版), 2017, 11(02): 119-124.

Pengfei Chen, Huirong Nie, Yifan Dai, Zhiming Cai, Lisha Mou. The research progress of genetically modified pigs in xenotransplantation[J]. Chinese Journal of Transplantation(Electronic Edition), 2017, 11(02): 119-124.

器官移植是治疗终末期器官衰竭的最有效手段,但供器官严重匮乏已成为器官移植发展的最大障碍,异种器官移植为解决这一问题开辟了新思路。猪在遗传学、解剖学及生理特性等方面与人具有较大的相似性,因此被认为是异种器官移植最理想的供体来源。随着基因编辑技术的发展,基因修饰猪在异种器官移植领域中的研究与应用已取得较大进展。本文就基因修饰猪在猪-灵长类动物异种器官移植中的研究与应用进行综述。

Organ transplantation is the most effective method to treat end-stage organ failure, but the severe shortage of donor organs has become the biggest obstacle for the development of organ transplantation. Recently, the study of xenotransplantation provides potential alternatives to solve the ever increasing shortage of donor organs. The pig is considered as the most suitable xenograft donor because of its physical and physiological similarity with humans. With the development of gene editing technique, the research and application of genetically modified pigs in the field of xenotransplantation have made great progress. In this review, we will discuss the progress of genetically modified pigs in pig-to-primate xenotransplantation.

表1 目前用于异种胰岛移植的基因修饰猪种类
1
Sakuma T,Woltjen K. Nuclease-mediated genome editing: At the front-line of functional genomics technology[J]. Dev Growth Differ, 2014, 56(1): 2-13.
2
Lutz AJ,Li P,Estrada JL, et al. Double knockout pigs deficient in N-glycolylneuraminic acid and galactose alpha-1, 3-galactose reduce the humoral barrier to xenotransplantation[J]. Xenotransplantation, 2013, 20(1): 27-35.
3
Nicolas A,Rossignol JL. Mechanisms for homologous recombination[J]. Nature, 1985, 314(6008): 230.
4
Swarthout JT,Raisinghani M,Cui X. Zinc finger nucleases: A new era for transgenic animals[J]. Ann Neurosci, 2011, 18(1): 25-28.
5
LaFountaine JS,Fathe K,Smyth HD. Delivery and therapeutic applications of gene editing technologies ZFNs, TALENs, and CRISPR/Cas9[J]. Int J Pharm, 2015, 494(1): 180-194.
6
Geurts AM,Cost GJ,Freyvert Y, et al. Knockout rats via embryo microinjection of zinc-finger nucleases[J]. Science, 2009, 325(5939): 433.
7
Yao J,Huang J,Zhao J. Genome editing revolutionize the creation of genetically modified pigs for modeling human diseases[J]. Hum Genet, 2016, 135(9): 1093-1105.
8
Christian M,Cermak T,Doyle EL, et al. Targeting DNA double-strand breaks with TAL effector nucleases[J]. Genetics, 2010, 186(2): 757-761.
9
Hockemeyer D,Wang H,Kiani S, et al. Genetic engineering of human pluripotent cells using TALE nucleases[J]. Nat Biotechnol, 2011, 29(8): 731-734.
10
Jinek M,Chylinski K,Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816-821.
11
Wilmut I,Schnieke AE,McWhir J, et al. Viable offspring derived from fetal and adult mammalian cells[J]. Nature, 1997, 385(6619): 810-813.
12
Kobayashi T,Cooper DK. Anti-Gal, alpha-Gal epitopes, and xenotransplantation[J]. Subcell Biochem, 1999, 32: 229-257.
13
Lai L,Kolber-Simonds D,Park KW, et al. Production of alpha-1, 3-galactosyltransferase knockout pigs by nuclear transfer cloning[J]. Science, 2002, 295(5557): 1089-1092.
14
Michel SG,Madariaga ML,Villani V, et al. Current progress in xenotransplantation and organ bioengineering[J]. Int J Surg, 2015, 13: 239-244.
15
Phelps CJ,Ball SF,Vaught TD, et al. Production and characterization of transgenic pigs expressing porcine CTLA4-Ig[J]. Xenotransplantation, 2009, 16(6): 477-485.
16
Cooper DK,Ekser B,Ramsoondar J, et al. The role of genetically engineered pigs in xenotransplantation research[J]. J Pathol, 2016, 238(2): 288-299.
17
Hara H,Witt W,Crossley T, et al. Human dominant-negative class Ⅱ transactivator transgenic pigs-effect on the human anti-pig T-cell immune response and immune status[J]. Immunology, 2013, 140(1): 39-46.
18
Miwa Y,Yamamoto K,Onishi A, et al. Potential value of human thrombomodulin and DAF expression for coagulation control in pig-to-human xenotransplantation[J]. Xenotransplantation, 2010, 17(1): 26-37.
19
Ekser B,Ezzelarab M,Hara H, et al. Clinical xenotransplantation: the next medical revolution?[J]. Lancet, 2012, 379(9816): 672-683.
20
Petersen B,Ramackers W,Tiede A, et al. Pigs transgenic for human thrombomodulin have elevated production of activated protein C[J]. Xenotransplantation, 2009, 16(6): 486-495.
21
Lee HJ,Lee BC,Kim YH, et al. Characterization of transgenic pigs that express human decay accelerating factor and cell membrane-tethered human tissue factor pathway inhibitor[J]. Reprod Domest Anim, 2011, 46(2): 325-332.
22
Choi K,Shim J,Ko N, et al. Production of heterozygous alpha 1, 3-galactosyltransferase (GGTA1) knock-out transgenic miniature pigs expressing human CD39[J]. Transgenic Res, 2017, 26(2): 209-224.
23
Yazaki S,Iwamoto M,Onishi A, et al. Production of cloned pigs expressing human thrombomodulin in endothelial cells[J]. Xenotransplantation, 2012, 19(2): 82-91.
24
Baldan N,Rigotti P,Calabrese F, et al. Ureteral stenosis in HDAF pig-to-primate renal xenotransplantation: a phenomenon related to immunological events?[J]. Am J Transplant, 2004, 4(4): 475-481.
25
Higginbotham L,Mathews D,Breeden CA, et al. Pre-transplant antibody screening and anti-CD154 costimulation blockade promote long-term xenograft survival in a pig-to-primate kidney transplant model[J]. Xenotransplantation, 2015, 22(3): 221-230.
26
Iwase H,Liu H,Wijkstrom M, et al. Pig kidney graft survival in a baboon for 136 days: longest life-supporting organ graft survival to date[J]. Xenotransplantation, 2015, 22(4): 302-309.
27
Cozzi E,Simioni P,Boldrin M, et al. Effects of long-term administration of high-dose recombinant human antithrombin in immunosuppressed primate recipients of porcine xenografts[J]. Transplantation, 2005, 80(10): 1501-1510.
28
Cowan PJ,Aminian A,Barlow H, et al. Protective effects of recombinant human antithrombin Ⅲ in pig-to-primate renal xenotransplantation[J]. Am J Transplant, 2002, 2(6): 520-525.
29
Iwase H,Ezzelarab MB,Ekser B, et al. The role of platelets in coagulation dysfunction in xenotransplantation, and therapeutic options[J]. Xenotransplantation, 2014, 21(3): 201-220.
30
Ramirez P,Chavez R,Majado M, et al. Life-supporting human complement regulator decay accelerating factor transgenic pig liver xenograft maintains the metabolic function and coagulation in the nonhuman primate for up to 8 days[J]. Transplantation, 2000, 70(7): 989-998.
31
Ekser B,Long C,Echeverri GJ, et al. Impact of thrombocytopenia on survival of baboons with genetically modified pig liver transplants: clinical relevance[J]. Am J Transplant, 2010, 10(2): 273-285.
32
Ekser B,Echeverri GJ,Hassett AC, et al. Hepatic function after genetically engineered pig liver transplantation in baboons[J]. Transplantation, 2010, 90(5): 483-493.
33
Yeh H,Machaidze Z,Wamala I, et al. Increased transfusion-free survival following auxiliary pig liver xenotransplantation[J]. Xenotransplantation, 2014, 21(5): 454-464.
34
Kuwaki K,Tseng YL,Dor FJ, et al. Heart transplantation in baboons using alpha 1, 3-galactosyltransferase gene-knockout pigs as donors: initial experience[J]. Nat Med, 2005, 11(1): 29-31.
35
Mañez R,Lopez-Pelaez E,Centeno A, et al. Transgenic expression in pig hearts of both human decay-accelerating factor and human membrane cofactor protein does not provide an additional benefit to that of human decay-accelerating factor alone in pig-to-baboon xenotransplantation[J]. Transplantation, 2004, 78(6): 930-933.
36
McGregor CG,Ricci D,Miyagi N, et al. Human CD55 expression blocks hyperacute rejection and restricts complement activation in Gal knockout cardiac xenografts[J]. Transplantation, 2012, 93(7): 686-692.
37
Estrada JL,Martens G,Li P, et al. Evaluation of human and non-human primate antibody binding to pig cells lacking GGTA1/CMAH/β4GalNT2 genes[J]. Xenotransplantation, 2015, 22(3): 194-202.
38
Byrne GW,Schirmer JM,Fass DN, et al. Warfarin or low-molecular-weight heparin therapy does not prolong pig-to-primate cardiac xenograft function[J]. Am J Transplant, 2005, 5(5): 1011-1120.
39
Cardona K,Korbutt GS,Milas Z, et al. Long-term survival of neonatal porcine islets in nonhuman primates by targeting costimulation pathways[J]. Nat Med, 2006, 12(3): 304-306.
40
Hering BJ,Wijkstrom M,Graham ML, et al. Prolonged diabetes reversal after intraportal xenotransplantation of wild-type porcine islets in immunosuppressed nonhuman primates[J]. Nat Med, 2006, 12(3): 301-303.
41
Shin JS,Kim JM,Kim JS, et al. Long-term control of diabetes in immunosuppressed nonhuman primates (NHP) by the transplantation of adult porcine islets[J]. Am J Transplant, 2015, 15(11): 2837-2850.
42
van der Windt DJ,Bottino R,Casu A, et al. Long-term controlled normoglycemia in diabetic non-human primates after transplantation with hCD46 transgenic porcine islets[J]. Am J Transplant, 2009, 9(12): 2716-2726.
43
Bottino R,Trucco M. Use of genetically-engineered pig donors in islet transplantation[J]. World J Transplant, 2015, 5(4): 243-250.
44
Bottino R,Wijkstrom M,van der Windt DJ, et al. Pig-to-monkey islet xenotransplantation using multi-transgenic pigs[J]. Am J Transplant, 2014, 14(10): 2275-2287.
45
Diswall M,Angeström J,Schuurman HJ, et al. Studies on glycolipid antigens in small intestine and pancreas from alpha1, 3-galactosyltransferase knockout miniature swine[J]. Transplantation, 2007, 84(10): 1348-1356.
46
Choi HJ,Lee JJ,Kim DH, et al. Blockade of CD40-CD154 costimulatory pathway promotes long-term survival of full-thickness porcine corneal grafts in nonhuman primates: clinically applicable xenocorneal transplantation[J]. Am J Transplant, 2015, 15(3): 628-641.
47
Chen Y,Stewart JM,Gunthart M, et al. Xenoantibody response to porcine islet cell transplantation using GTKO, CD55, CD59, and fucosyltransferase multiple transgenic donors[J]. Xenotransplantation, 2014, 21(3): 244-253.
48
Schmidt P,Goto M,Le Mauff B, et al. Adenovirus-mediated expression of human CD55 or CD59 protects adult porcine islets from complement-mediated cell lysis by human serum[J]. Transplantation, 2003, 75(5): 697-702.
49
Wijkstrom M,Bottino R,Iwase H, et al. Glucose metabolism in pigs expressing human genes under an insulin promoter[J]. Xenotransplantation, 2015, 22(1): 70-79.
50
Thompson P,Badell IR,Lowe M, et al. Islet xenotransplantation using gal-deficient neonatal donors improves engraftment and function[J]. Am J Transplant, 2011, 11(12): 2593-2602.
51
Lee JH,Lee HJ,Nahm KM, et al. Effects of combined expression of human complement regulatory proteins and H-transferase on the inhibition of complement-mediated cytolysis in porcine embryonic fibroblasts[J]. Transplant Proc, 2006, 38(5): 1618-1621.
52
Park JY,Park MR,Bui HT, et al. α1, 3-galactosyltransferase deficiency in germ-free miniature pigs increases N-glycolylneuraminic acids as the xenoantigenic determinant in pig-human xenotransplantation[J]. Cell Reprogram, 2012, 14(4): 353-363.
53
Kumagai-Braesch M,Ekberg H,Wang F, et al. Anti-LFA-1 improves pig islet xenograft function in diabetic mice when long-term acceptance is induced by CTLA4Ig/anti-CD40L[J]. Transplantation, 2007, 83(9): 1259-1267.
54
Klymiuk N,van Buerck L,Bähr A, et al. Xenografted islet cell clusters from INSLEA29Y transgenic pigs rescue diabetes and prevent immune rejection in humanized mice[J]. Diabetes, 2012, 61(6): 1527-1532.
55
Iwase H,Ekser B,Satyananda V, et al. Initial in vivo experience of pig artery patch transplantation in baboons using mutant MHC (CIITA-DN) pigs[J]. Transpl Immunol, 2015, 32(2): 99-108.
56
Yeom HJ,Koo OJ,Yang J, et al. Generation and characterization of human heme oxygenase-1 transgenic pigs[J]. PLoS One, 2012, 7(10): e46646.
57
Oropeza M,Petersen B,Carnwath JW, et al. Transgenic expression of the human A20 gene in cloned pigs provides protection against apoptotic and inflammatory stimuli[J]. Xenotransplantation, 2009, 16(6): 522-534.
58
Vabres B,Le Bas-Bernardet S,Riochet D, et al. hCTLA4-Ig transgene expression in keratocytes modulates rejection of corneal xenografts in a pig to non-human primate anterior lamellar keratoplasty model[J]. Xenotransplantation, 2014, 21(5): 431-443.
59
Hara H,Cooper DK. The immunology of corneal xenotransplantation: a review of the literature[J]. Xenotransplantation, 2010, 17(5): 338-349.
60
Cohen D,Miyagawa Y,Mehra R, et al. Distribution of non-gal antigens in pig cornea: relevance to corneal xenotransplantation[J]. Cornea, 2014, 33(4): 390-397.
61
Hara H,Koike N,Long C, et al. Initial in vitro investigation of the human immune response to corneal cells from genetically engineered pigs[J]. Invest Ophthalmol Vis Sci, 2011, 52(8): 5278-5286.
[1] 艾紫叶, 李玲, 何重香, 黄伟, 叶啟发. 猪器官异种移植研究进展[J]. 中华移植杂志(电子版), 2023, 17(03): 186-191.
[2] 任明仕, 王明岩, 董士勇, 彭江, 申华, 刘冰, 崔梦一, 成楠, 刘博罕, 邱实, 张涛, 任延玲, 魏红江, 宋翔宇, 杨博尧, 王凯, 熊兴, 王嵘. 人源化基因修饰猪-猴异种心脏移植的实验研究[J]. 中华移植杂志(电子版), 2022, 16(06): 329-338.
[3] 任明仕, 王嵘, 王明岩, 张丽月, 成楠, 吴远斌. 异种心脏移植基因修饰策略及围手术期管理研究进展[J]. 中华移植杂志(电子版), 2022, 16(03): 183-189.
[4] 李大伟, 孙一, 姜翠萍, 丛文斌, 张海宁. 重组人骨形态发生蛋白-2质粒转染诱导人脐血间充质干细胞软骨分化研究[J]. 中华老年骨科与康复电子杂志, 2019, 05(02): 75-81.
[5] 于佳佳, 张旭霞, 李传友, 刘毅, 唐神结. 规律成簇间隔短回文重复序列及其相关蛋白基因编辑技术在感染性疾病诊断中的应用及其进展[J]. 中华诊断学电子杂志, 2021, 09(01): 62-66.
阅读次数
全文


摘要