切换至 "中华医学电子期刊资源库"

中华移植杂志(电子版) ›› 2020, Vol. 14 ›› Issue (01) : 49 -53. doi: 10.3877/cma.j.issn.1674-3903.2020.01.013

所属专题: 文献

综述

间充质干细胞免疫调节作用在终末期肝病治疗中的研究进展
柳安雄1, 王伟1, 钟自彪1, 叶啟发2,()   
  1. 1. 430071 武汉大学中南医院 武汉大学肝胆疾病研究院 武汉大学移植医学中心 移植医学技术湖北省重点实验室
    2. 430071 武汉大学中南医院 武汉大学肝胆疾病研究院 武汉大学移植医学中心 移植医学技术湖北省重点实验室;长沙 410013,中南大学湘雅三医院 卫生部移植医学工程技术研究中心
  • 收稿日期:2019-08-06 出版日期:2020-02-25
  • 通信作者: 叶啟发
  • 基金资助:
    国家自然科学基金-新疆联合基金(U1403222)

Advances in immunomodulatory effects of mesenchymal stem cells in end-stage liver disease

Anxiong Liu1, Wei Wang1, Zibiao Zhong1, Qifa Ye2,()   

  1. 1. Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430071, China
    2. Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430071, China; The 3rd Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha 410013, China
  • Received:2019-08-06 Published:2020-02-25
  • Corresponding author: Qifa Ye
  • About author:
    Corresponding author: Ye Qifa, Email:
引用本文:

柳安雄, 王伟, 钟自彪, 叶啟发. 间充质干细胞免疫调节作用在终末期肝病治疗中的研究进展[J]. 中华移植杂志(电子版), 2020, 14(01): 49-53.

Anxiong Liu, Wei Wang, Zibiao Zhong, Qifa Ye. Advances in immunomodulatory effects of mesenchymal stem cells in end-stage liver disease[J]. Chinese Journal of Transplantation(Electronic Edition), 2020, 14(01): 49-53.

肝移植是治疗终末期肝病的有效方法,然而供器官来源紧缺限制了肝移植的发展,因此亟需找到其他有效可行的治疗措施。干细胞具有良好的自我更新和分化潜能,具有修复受损肝脏的潜力。本文综述间充质干细胞的来源、生物学特性和免疫调节作用以及治疗终末期肝病的前景、机制及其临床应用。

Liver transplantation is an effective therapy method for end-stage liver disease. However, the shortage of donor organs restricts the development of liver transplantation, and we urgently need to find other effective and feasible treatment measures. Mesenchymal stem cells (MSCs) have both the capacity for self-renewal and the potential for differentiation, and research has shown that they also had the potential to repair damaged liver. In this paper, the source, biological characteristics, immunoregulation and treatment prospects for end-stage liver disease of MSCs are briefly reviewed.

1
Zhang Z, Wang FS. Stem cell therapies for liver failure and cirrhosis[J]. J Hepatol, 2013, 59(1):183-185.
2
da Silva Meirelles L, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues[J]. J Cell Sci, 2006, 119(Pt 11):2204-2213.
3
El-Badawy A, Amer M, Abdelbaset R, et al. Adipose stem cells display higher regenerative capacities and more adaptable electro-kinetic properties compared to bone marrow-derived mesenchymal stromal cells[J]. Sci Rep, 2016, 6:37801.
4
Zheng Y, Huang C, Liu F, et al. Comparison of the neuronal differentiation abilities of bone marrowderived and adipose tissuederived mesenchymal stem cells[J]. Mol Med Rep, 2017, 16(4):3877-3886.
5
Zhang QZ, Nguyen AL, Yu WH, et al. Human oral mucosa and gingiva: a unique reservoir for mesenchymal stem cells[J]. J Dent Res, 2012, 91(11):1011-1018.
6
Semenov OV, Koestenbauer S, Riegel M, et al. Multipotent mesenchymal stem cells from human placenta: critical parameters for isolation and maintenance of stemness after isolation[J]. Am J Obstet Gynecol, 2010, 202(2):191-193.
7
Lee OK, Kuo TK, Chen WM, et al. Isolation of multipotent mesenchymal stem cells from umbilical cord blood[J]. Blood, 2004, 103(5):1669-1675.
8
Pieper IL, Smith R, Bishop JC, et al. Isolation of mesenchymal stromal cells from peripheral blood of ST elevation myocardial infarction patients[J]. Artif Organs, 2017, 41(7):654-666.
9
Kim YS, Lee HJ, Yeo JE, et al. Isolation and characterization of human mesenchymal stem cells derived from synovial fluid in patients with osteochondral lesion of the talus[J]. Am J Sports Med, 2015, 43(2):399-406.
10
Kmiecik G, Spoldi V, Silini A, et al. Current view on osteogenic differentiation potential of mesenchymal stromal cells derived from placental tissues[J]. Stem Cell Rev Rep, 2015, 11(4):570-585.
11
Morandi F, Raffaghello L, Bianchi G, et al. Immunogenicity of human mesenchymal stem cells in HLA-class I-restricted T-cell responses against viral or tumor-associated antigens[J]. Stem Cells, 2008, 26(5):1275-1287.
12
Le Blanc K, Tammik L, Sundberg B, et al. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex[J]. Scand J Immunol, 2003, 57(1):11-20.
13
Rasmusson I, Ringden O, Sundberg B, et al. Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells[J]. Transplantation, 2003, 76(8):1208-1213.
14
Poh KK, Sperry E, Young RG, et al. Repeated direct endomyocardial transplantation of allogeneic mesenchymal stem cells: safety of a high dose, ′off-the-shelf′,cellular cardiomyoplasty strategy[J]. Int J Cardiol, 2007, 117(3):360-364.
15
Zhao J, Wang J, Dang J, et al. A preclinical study-systemic evaluation of safety on mesenchymal stem cells derived from human gingiva tissue[J]. Stem Cell Res Ther, 2019, 10(1):165.
16
Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation[J]. Nat Rev Immunol, 2008, 8(12):958-969.
17
Raffaghello L, Bianchi G, Bertolotto M, et al. Human mesenchymal stem cells inhibit neutrophil apoptosis: a model for neutrophil preservation in the bone marrow niche[J]. Stem Cells, 2008, 26(1):151-162.
18
Brandau S, Jakob M, Hemeda H, et al. Tissue-resident mesenchymal stem cells attract peripheral blood neutrophils and enhance their inflammatory activity in response to microbial challenge[J]. J Leukoc Biol, 2010, 88(5):1005-1015.
19
Bischoff SC. Role of mast cells in allergic and non-allergic immune responses: comparison of human and murine data[J]. Nat Rev Immunol, 2007, 7(2):93-104.
20
Brown JM, Nemeth K, Kushnir-Sukhov NM, et al. Bone marrow stromal cells inhibit mast cell function via a COX2-dependent mechanism[J]. Clin Exp Allergy, 2011, 41(4):526-534.
21
Selmani Z, Naji A, Zidi I, et al. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4CD25highFOXP3 regulatory T cells[J]. Stem Cells, 2008, 26(1):212-222.
22
Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli[J]. Blood, 2002, 99(10):3838-3843.
23
Glennie S, Soeiro I, Dyson PJ, et al. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells[J]. Blood, 2005, 105(7):2821-2827.
24
Plumas J, Chaperot L, Richard MJ, et al. Mesenchymal stem cells induce apoptosis of activated T cells[J]. Leukemia, 2005, 19(9):1597-1604.
25
Akiyama K, Chen C, Wang D, et al. Mesenchymal-stem-cell-induced immunoregulation involves FAS-ligand-/FAS-mediated T cell apoptosis[J]. Cell Stem Cell, 2012, 10(5):544-555.
26
Luz-Crawford P, Kurte M, Bravo-Alegria J, et al. Mesenchymal stem cells generate a CD4CD25Foxp3 regulatory T cell population during the differentiation process of Th1 and Th17 cells[J]. Stem Cell Res Ther, 2013, 4(3):65.
27
Corcione A, Benvenuto F, Ferretti E, et al. Human mesenchymal stem cells modulate B-cell functions[J]. Blood, 2006, 107(1):367-372.
28
Che N, Li X, Zhou S, et al. Umbilical cord mesenchymal stem cells suppress B-cell proliferation and differentiation[J]. Cell Immunol, 2012, 274(1-2):46-53.
29
Rafei M, Hsieh J, Fortier S, et al. Mesenchymal stromal cell-derived CCL2 suppresses plasma cell immunoglobulin production via STAT3 inactivation and PAX5 induction[J]. Blood, 2008, 112(13):4991-4998.
30
Banas A, Teratani T, Yamamoto Y, et al. IFATS collection: in vivo therapeutic potential of human adipose tissue mesenchymal stem cells after transplantation into mice with liver injury[J]. Stem Cells, 2008, 26(10):2705-2712.
31
Maumus M, Jorgensen C, Noel D. Mesenchymal stem cells in regenerative medicine applied to rheumatic diseases: role of secretome and exosomes[J]. Biochimie, 2013, 95(12):2229-2234.
32
Gazdic M, Arsenijevic A, Markovic BS, et al. Mesenchymal stem cell-dependent modulation of liver diseases[J]. Int J Biol Sci, 2017, 13(9):1109-1117.
33
Liu YC, Zou XB, Chai YF, et al. Macrophage polarization in inflammatory diseases[J]. Int J Biol Sci, 2014, 10(5):520-529.
34
Suk KT, Yoon JH, Kim MY, et al. Transplantation with autologous bone marrow-derived mesenchymal stem cells for alcoholic cirrhosis: Phase 2 trial[J]. Hepatology, 2016, 64(6):2185-2197.
35
Li M, Lv Y, Chen F, et al. Co-stimulation of LPAR1 and S1PR1/3 increases the transplantation efficacy of human mesenchymal stem cells in drug-induced and alcoholic liver diseases[J]. Stem Cell Res Ther, 2018, 9(1):161.
36
Bruno S, Herrera SM, Pasquino C, et al. Human liver-derived stem cells improve fibrosis and inflammation associated with nonalcoholic steatohepatitis[J]. Stem Cells Int, 2019:6351091.
37
Chen L, Lu FB, Chen DZ, et al. BMSCs-derived miR-223-containing exosomes contribute to liver protection in experimental autoimmune hepatitis[J]. Mol Immunol, 2018, 93:38-46.
38
Lin BL, Chen JF, Qiu WH, et al. Allogeneic bone marrow-derived mesenchymal stromal cells for hepatitis B virus-related acute-on-chronic liver failure: A randomized controlled trial[J]. Hepatology, 2017, 66(1):209-219.
39
El-Ansary M, Abdel-Aziz I, Mogawer S, et al. Phase Ⅱ trial: undifferentiated versus differentiated autologous mesenchymal stem cells transplantation in Egyptian patients with HCV induced liver cirrhosis[J]. Stem Cell Rev Rep, 2012, 8(3):972-981.
40
Amin MA, Sabry D, Rashed LA, et al. Short-term evaluation of autologous transplantation of bone marrow-derived mesenchymal stem cells in patients with cirrhosis: Egyptian study[J]. Clin Transplant, 2013, 27(4):607-612.
41
Zhang Z, Lin H, Shi M, et al. Human umbilical cord mesenchymal stem cells improve liver function and ascites in decompensated liver cirrhosis patients[J]. J Gastroenterol Hepatol, 2012, 27(Suppl 2):112-120.
42
Du Y, Li D, Han C, et al. Exosomes from human-induced pluripotent stem cell-derived mesenchymal stromal cells (hiPSC-MSCs) protect liver against hepatic ischemia/ reperfusion injury via activating sphingosine kinase and sphingosine-1-phosphate signaling pathway[J]. Cell Physiol Biochem, 2017, 43(2):611-625.
43
Sun CK, Chang CL, Lin YC, et al. Systemic administration of autologous adipose-derived mesenchymal stem cells alleviates hepatic ischemia-reperfusion injury in rats[J]. Crit Care Med, 2012, 40(4):1279-1290.
44
Saat TC, van den Engel S, Bijman-Lachger W, et al. Fate and effect of intravenously infused mesenchymal stem cells in a mouse model of hepatic ischemia reperfusion injury and resection[J]. Stem Cells Int, 2016:5761487.
45
Peng Y, Chen X, Liu Q, et al. Mesenchymal stromal cells infusions improve refractory chronic graft versus host disease through an increase of CD5 regulatory B cells producing interleukin 10[J]. Leukemia, 2015, 29(3):636-646.
46
Gao L, Zhang Y, Hu B, et al. Phase Ⅱ multicenter, randomized, double-blind controlled study of efficacy and safety of umbilical cord-derived mesenchymal stromal cells in the prophylaxis of chronic graft-versus-host disease after HLA-haploidentical stem-cell transplantation[J]. J Clin Oncol, 2016, 34(24):2843-2850.
47
Le Blanc K, Frassoni F, Ball L, et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase Ⅱ study[J]. Lancet, 2008, 371(9624):1579-1586.
48
Introna M, Lucchini G, Dander E, et al. Treatment of graft versus host disease with mesenchymal stromal cells: a phase Ⅰ study on 40 adult and pediatric patients[J]. Biol Blood Marrow Transplant, 2014, 20(3):375-381.
[1] . 肝移植治疗终末期肝病[J]. 中华危重症医学杂志(电子版), 2023, 16(04): 1-.
[2] 孔欣, 宋宝全, 刘吟, 张剑, 仇惠英, 吴德沛. 异基因造血干细胞移植并发难治性呃逆一例[J]. 中华移植杂志(电子版), 2023, 17(04): 253-255.
[3] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[4] 李晔, 何洁, 胡锦秀, 王金祥, 田川, 潘杭, 陈梦蝶, 赵晓娟, 叶丽, 张敏, 潘兴华. 高活性间充质干细胞干预猕猴卵巢衰老的研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 210-219.
[5] 龙慧玲, 林蜜, 邵婷. 三维球体间充质干细胞培养技术的研究进展及其应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 229-234.
[6] 刘文慧, 吴涛, 张曦. 间充质干细胞联合血小板生成素受体激动剂在异基因造血干细胞移植后血小板恢复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 242-246.
[7] 王红敏, 谢云波, 王彦虎, 王福生. 间充质干细胞治疗新冠病毒感染的临床研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 247-256.
[8] 秦富豪, 郑正, 江滨. 间充质干细胞在克罗恩病肛瘘治疗中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 172-177.
[9] 袁久莉, 刘丹, 李林藜, 刘晋宇. 毛囊间充质干细胞的基础研究及临床应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 189-192.
[10] 李芸芸, 吴涛, 毛东锋, 鱼玲玲, 刘文慧. 轻型β-地中海贫血供者异基因造血干细胞移植治疗重型再生障碍性贫血1例[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 84-86.
[11] 冯星, 靳洪涛, 马隽, 宋永周, 刘爱京. 间充质干细胞治疗炎性关节炎的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 87-92.
[12] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[13] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[14] 陈客宏. 干细胞外泌体防治腹膜透析腹膜纤维化新技术研究[J]. 中华肾病研究电子杂志, 2023, 12(03): 180-180.
[15] 梁宇同, 丁旭, 马国慧, 黄艳红. 间充质干细胞在宫腔粘连治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 596-599.
阅读次数
全文


摘要