1 |
Chatauret N, Coudroy R, Delpech PO, et al. Mechanistic analysis of nonoxygenated hypothermic machine perfusion′s protection on warm ischemic kidney uncovers greater eNOS phosphorylation and vasodilation[J]. Am J Transplant, 2014,14(11): 2500-2514.
|
2 |
Wszola M, Kwiatkowski A, Domagala P, et al. Preservation of kidneys by machine perfusion influences gene expression and may limit ischemia/reperfusion injury[J]. Prog Transplant, 2014,24(1): 19-26.
|
3 |
Kroemer G. B709 mitochondrial control of cell death[J]. ScientificWorldJournal, 2001,1: 48.
|
4 |
Jochmans I, Hofker HS, Davies L, et al. Oxygenated hypothermic machine perfusion of kidneys donated after circulatory death: an international randomised controlled trial[C]//26th Annual meeting of Belgian Transplantation Society, Antwerp, 2019.
|
5 |
Kron P, Schlegel A, Muller X, et al. Hypothermic oxygenated perfusion: a simple and effective method to modulate the immune response in kidney transplantation[J]. Transplantation, 2019,103(5): e128-e136.
|
6 |
Hoyer DP, Gallinat A, Swoboda S, et al. Influence of oxygen concentration during hypothermic machine perfusion on porcine kidneys from donation after circulatory death[J]. Transplantation, 2014,98(9): 944-950.
|
7 |
Pegg DE, Foreman J, Hunt CJ, et al. The mechanism of action of retrograde oxygen persufflation in renal preservation[J]. Transplantation, 1989,48(2): 210-217.
|
8 |
Kron P, Schlegel A, de Rougemont O, et al. Short, cool, and well oxygenated - HOPE for kidney transplantation in a rodent model[J]. Ann Surg, 2016,264(5): 815-822.
|
9 |
Darius T, Gianello P, Vergauwen M, et al. The effect on early renal function of various dynamic preservation strategies in a preclinical pig ischemia-reperfusion autotransplant model[J]. Am J Transplant, 2018,19(3): 752-762.
|
10 |
Thuillier R, Allain G, Celhay O, et al. Benefits of active oxygenation during hypothermic machine perfusion of kidneys in a preclinical model of deceased after cardiac death donors[J]. J Surg Res, 2013,184(2): 1174-1181.
|
11 |
Schlegel A, Kron P, Graf R, et al. Hypothermic oxygenated perfusion (HOPE) downregulates the immune response in a rat model of liver transplantation[J]. Ann Surg, 2014,260(5): 931-937.
|
12 |
Casiraghi F, Azzollini N, Todeschini M, et al. Complement alternative pathway deficiency in recipients protects kidney allograft from ischemia/reperfusion injury and alloreactive T cell response[J]. Am J Transplant, 2017,17(9): 2312-2325.
|
13 |
Mills EL, Kelly B, O′Neill LAJ. Mitochondria are the powerhouses of immunity[J]. Nat Immunol, 2017,18(5): 488-498.
|
14 |
Gallinat A, Paul A, Efferz P, et al. Role of oxygenation in hypothermic machine perfusion of kidneys from heart beating donors[J]. Transplantation, 2012,94(8): 809-813.
|
15 |
Venema LH, Brat A, Moers C, et al. Effects of oxygen during long-term hypothermic machine perfusion in a porcine model of kidney donation after circulatory death[J]. Transplantation, 2019,103(10): 2057-2064.
|
16 |
Rudolf LE, Mandel S. Supercooling, intermittent perfusion, and high pressure oxygen in whole organ preservation[J]. Transplantation, 1967,5(4): 1159-1166.
|
17 |
Edwards ML. Hyperbaric oxygen therapy. Part 1: history and principles[J]. J Vet Emerg Crit Care (San Antonio), 2010,20(3): 284-288.
|
18 |
Treckmann J, Nagelschmidt M, Minor T, et al. Function and quality of kidneys after cold storage, machine perfusion, or retrograde oxygen persufflation: results from a porcine autotransplantation model[J]. Cryobiology, 2009,59(1): 19-23.
|
19 |
Molácáček J, Opatrný V, Matějka R, et al. Retrograde oxygen persufflation of kidney - experiment on an animal[J]. In Vivo, 2016,30(6): 801-805.
|
20 |
Edwards ML. Hyperbaric oxygen therapy. Part 2: application in disease[J]. J Vet Emerg Crit Care (San Antonio), 2010,20(3): 289-297.
|
21 |
Patel K, Smith TB, Neil DAH, et al. The effects of oxygenation on ex vivo kidneys undergoing hypothermic machine perfusion[J]. Transplantation, 2019,103(2): 314-322.
|
22 |
Darius T, Vergauwen M, Smith TB, et al. Influence of different partial pressures of oxygen during continuous hypothermic machine perfusion in a pig kidney ischemia-reperfusion autotransplant model[J]. Transplantation, 2020,104(4): 731-743.
|
23 |
Ijichi H, Taketomi A, Soejima Y, et al. Effect of hyperbaric oxygen on cold storage of the liver in rats[J]. Liver Int, 2006,26(2): 248-253.
|
24 |
Guimarães FA, Taha MO, Simões MJ, et al. Apoptosis and nuclear proliferation in rat small bowel submitted to hypothermic hyperbaric oxygenation for preservation[J]. Transplant Proc, 2006,38(6): 1876-1878.
|
25 |
Amberson WR. Clinical experience with hemoglobin-saline solutions[J]. Science, 1947,106(2745): 117.
|
26 |
Brandhorst H, Asif S, Andersson K, et al. A new oxygen carrier for improved long-term storage of human pancreata before islet isolation[J]. Transplantation, 2010,89(2): 155-160.
|
27 |
Hosgood SA, Nicholson ML. The role of perfluorocarbon in organ preservation[J]. Transplantation, 2010,89(10): 1169-1175.
|
28 |
Marada T, Zacharovova K, Saudek F. Perfluorocarbon improves post-transplant survival and early kidney function following prolonged cold ischemia[J]. Eur Surg Res, 2010,44(3-4): 170-178.
|
29 |
Maluf DG, Mas VR, Yanek K, et al. Molecular markers in stored kidneys using perfluorocarbon-based preservation solution: preliminary results[J]. Transplant Proc, 2006,38(5): 1243-1246.
|
30 |
Hosgood SA, Mohamed IH, Nicholson ML. The two layer method does not improve the preservation of porcine kidneys[J]. Med Sci Monit, 2011,17(1): BR27-BR33.
|
31 |
Jahr JS, Guinn NR, Lowery DR, et al. Blood substitutes and oxygen therapeutics: a review[J]. Anesth Analg, 2019. [Ahead of print]
|
32 |
Vogel T, Brockmann JG, Coussios C, et al. The role of normothermic extracorporeal perfusion in minimizing ischemia reperfusion injury[J]. Transplant Rev (Orlando), 2012,26(2): 156-162.
|
33 |
Matton APM, Burlage LC, van Rijn R, et al. Normothermic machine perfusion of donor livers without the need for human blood products[J]. Liver Transpl, 2018,24(4): 528-538.
|
34 |
Laing RW, Bhogal RH, Wallace L, et al. The use of an acellular oxygen carrier in a human liver model of normothermic machine perfusion[J]. Transplantation, 2017,101(11): 2746-2756.
|
35 |
Mahboub P, Aburawi M, Karimian N, et al. The efficacy of HBOC-201 in ex situ gradual rewarming kidney perfusion in a rat model[J]. Artif Organs, 2020,44(1): 81-90.
|
36 |
Shonaka T, Matsuno N, Obara H, et al. Application of perfusate with human-derived oxygen carrier solution under subnormothermic machine perfusion for donation after cardiac death liver grafts in pigs[J]. Transplant Proc, 2018,50(9): 2821-2825.
|
37 |
Rousselot M, Delpy E, Drieu La Rochelle C, et al. Arenicola marina extracellular hemoglobin: a new promising blood substitute[J]. Biotechnol J, 2006,1(3): 333-345.
|
38 |
Le Gall T, Polard V, Rousselot M, et al. In vivo biodistribution and oxygenation potential of a new generation of oxygen carrier[J]. J Biotechnol, 2014,187: 1-9.
|
39 |
Tsai AG, Intaglietta M, Sakai H, et al. Microcirculation and NO-CO studies of a natural extracellular hemoglobin developed for an oxygen therapeutic carrier[J]. Curr Drug Discov Technol, 2012,9(3): 166-172.
|
40 |
Thuillier R, Dutheil D, Trieu MT, et al. Supplementation with a new therapeutic oxygen carrier reduces chronic fibrosis and organ dysfunction in kidney static preservation[J]. Am J Transplant, 2011,11(9): 1845-1860.
|
41 |
Kasil A, Giraud S, Couturier P, et al. Individual and combined impact of oxygen and oxygen transporter supplementation during kidney machine preservation in a porcine preclinical kidney transplantation model[J]. Int J Mol Sci, 2019,20(8): 1992.
|