1 |
Dar WA, Sullivan E, Bynon JS, et al. Ischaemia reperfusion injury in liver transplantation: cellular and molecular mechanisms[J]. Liver Int, 2019, 39(5): 788-801.
|
2 |
Konishi T, Lentsch AB. Hepatic ischemia/reperfusion: mechanisms of tissue injury, repair, and regeneration[J]. Gene Expr, 2017, 17(4): 277-287.
|
3 |
Zhou J, Chen J, Wei Q, et al. The role of ischemia/reperfusion injury in early hepatic allograft dysfunction[J]. Liver Transpl, 2020, 26(8): 1034-1048.
|
4 |
Padrissa-Altes S, Zaouali MA, Bartrons R, et al. Ubiquitin-proteasome system inhibitors and AMPK regulation in hepatic cold ischaemia and reperfusion injury: possible mechanisms[J]. Clin Sci (Lond), 2012, 123(2): 93-98.
|
5 |
Kwon YT, Ciechanover A. The ubiquitin code in the ubiquitin-proteasome system and autophagy[J]. Trends Biochem Sci, 2017, 42(11): 873-886.
|
6 |
Park J, Cho J, Song EJ. Ubiquitin-proteasome system (UPS) as a target for anticancer treatment[J]. Arch Pharm Res, 2020, 43(11): 1144-1161.
|
7 |
Spanig S, Kellermann K, Dieterlen MT, et al. The ubiquitin proteasome system in ischemic and dilated cardiomyopathy[J]. Int J Mol Sci, 2019, 20(24): 6354.
|
8 |
Cao J, Zhong MB, Toro CA, et al. Endo-lysosomal pathway and ubiquitin-proteasome system dysfunction in Alzheimer′s disease pathogenesis[J]. Neurosci Lett, 2019, 703: 68-78.
|
9 |
Luza S, Opazo CM, Bousman CA, et al. The ubiquitin proteasome system and schizophrenia[J]. Lancet Psychiatry, 2020, 7(6): 528-537.
|
10 |
Nam T, Han JH, Devkota S, et al. Emerging paradigm of crosstalk between autophagy and the ubiquitin-proteasome system[J]. Mol Cells, 2017, 40(12): 897-905.
|
11 |
Pohl C, Dikic I. Cellular quality control by the ubiquitin-proteasome system and autophagy[J]. Science, 2019, 366(6467): 818-822.
|
12 |
Varshavsky A. The ubiquitin system, autophagy, and regulated protein degradation[J]. Annu Rev Biochem, 2017, 86: 123-128.
|
13 |
Zheng N, Shabek N. Ubiquitin ligases: structure, function, and regulation[J]. Annu Rev Biochem, 2017, 86: 129-157.
|
14 |
Rotin D, Kumar S. Physiological functions of the HECT family of ubiquitin ligases[J]. Nat Rev Mol Cell Biol, 2009, 10(6): 398-409.
|
15 |
Xu L, Fan J, Wang Y, et al. An activity-based probe developed by a sequential dehydroalanine formation strategy targets HECT E3 ubiquitin ligases[J]. Chem Commun (Camb), 2019, 55(49): 7109-7112.
|
16 |
Zhou W, Zhong ZB, Lin DN, et al. Hypothermic oxygenated perfusion inhibits HECTD3-mediated TRAF3 polyubiquitination to alleviate DCD liver ischemia-reperfusion injury[J]. Cell Death Dis, 2021, 12(2): 211.
|
17 |
Hu JF, Zhu XH, Zhang XJ, et al. Targeting TRAF3 signaling protects against hepatic ischemia/reperfusions injury[J]. J Hepatol, 2016, 64(1): 146-159.
|
18 |
Jiang QY, Li FB, Cheng Z, et al. The role of E3 ubiquitin ligase HECTD3 in cancer and beyond[J]. Cell Mol Life Sci, 2020, 77(8): 1483-1495.
|
19 |
Jiang WW, Kong LL, Ni QF, et al. miR-146a ameliorates liver ischemia/reperfusion injury by suppressing IRAK1 and TRAF6[J]. PLoS One, 2014, 9(7): e101530.
|
20 |
Huang ZT, Zheng DF, Pu JL, et al. MicroRNA-125b protects liver from ischemia/reperfusion injury via inhibiting TRAF6 and NF-kappaB pathway[J]. Biosci Biotechnol Biochem, 2019, 83(5): 829-835.
|
21 |
Xu XL, Zhang ZC, Lu YJ, et al. ARRB1 ameliorates liver ischaemia/reperfusion injury via antagonizing TRAF6-mediated Lysine 6-linked polyubiquitination of ASK1 in hepatocytes[J]. J Cell Mol Med, 2020, 24(14): 7814-7828.
|
22 |
Luo YH, Huang ZT, Zong KZ, et al. miR-194 ameliorates hepatic ischemia/reperfusion injury via targeting PHLDA1 in a TRAF6-dependent manner[J]. Int Immunopharmacol, 2021, 96: 107604.
|
23 |
Detry O, Deroover A, Meurisse N, et al. Donor age as a risk factor in donation after circulatory death liver transplantation in a controlled withdrawal protocol programme[J]. Br J Surg, 2014, 101(7): 784-792.
|
24 |
Li Y, Ruan DY, Jia CC, et al. Aging aggravates hepatic ischemia-reperfusion injury in mice by impairing mitophagy with the involvement of the EIF2alpha-parkin pathway[J]. Aging (Albany NY), 2018, 10(8): 1902-1920.
|
25 |
Ning XJ, Yan X, Wang YF, et al. Parkin deficiency elevates hepatic ischemia/reperfusion injury accompanying decreased mitochondrial autophagy, increased apoptosis, impaired DNA damage repair and altered cell cycle distribution[J]. Mol Med Rep, 2018, 18(6): 5663-5668.
|
26 |
Gladkova C, Maslen SL, Skehel JM, et al. Mechanism of parkin activation by PINK1[J]. Nature, 2018, 559(7714): 410-414.
|
27 |
Gu J, Zhang T, Guo JR, et al. PINK1 activation and translocation to mitochondria-associated membranes mediates mitophagy and protects against hepatic ischemia/reperfusion injury[J]. Shock, 2020, 54(6): 783-793.
|
28 |
Saidi RF, Rajeshkumar B, Shariftabrizi A, et al. Human adipose-derived mesenchymal stem cells attenuate liver ischemia-reperfusion injury and promote liver regeneration[J]. Surgery, 2014, 156(5): 1225-1231.
|
29 |
Pan GZ, Yang Y, Zhang J, et al. Bone marrow mesenchymal stem cells ameliorate hepatic ischemia/reperfusion injuries via inactivation of the MEK/ERK signaling pathway in rats[J]. J Surg Res, 2012, 178(2): 935-948.
|
30 |
Sun CK, Chang CL, Lin YC, et al. Systemic administration of autologous adipose-derived mesenchymal stem cells alleviates hepatic ischemia-reperfusion injury in rats[J]. Crit Care Med, 2012, 40(4): 1279-1290.
|
31 |
Zheng J, Chen L, Lu TY, et al. MSCs ameliorate hepatocellular apoptosis mediated by PINK1-dependent mitophagy in liver ischemia/reperfusion injury through AMPKα activation[J]. Cell Death Dis, 2020, 11(4): 256.
|
32 |
Bai X, Zhang YL, Liu LN. Inhibition of TRIM8 restrains ischaemia-reperfusion-mediated cerebral injury by regulation of NF-kappaB activation associated inflammation and apoptosis[J]. Exp Cell Res, 2020, 388(2): 111818.
|
33 |
Yan FJ, Zhang XJ, Wang WX, et al. The E3 ligase tripartite motif 8 targets TAK1 to promote insulin resistance and steatohepatitis[J]. Hepatology, 2017, 65(5): 1492-1511.
|
34 |
Qiu T, Wang TY, Zhou JQ, et al. Tripartite motif 8 deficiency relieves hepatic ischaemia/reperfusion injury via TAK1-dependent signalling pathways[J]. Int J Biol Sci, 2019, 15(8): 1618-1629.
|
35 |
Chen SY, Zhang HP, Li J, et al. Tripartite motif-containing 27 attenuates liver ischemia/reperfusion injury by suppressing transforming growth factor beta-activated kinase 1 (TAK1) by TAK1 binding protein 2/3 degradation[J]. Hepatology, 2021, 73(2): 738-758.
|
36 |
Athanasopoulos V, Ramiscal RR, Vinuesa CG. ROQUIN signalling pathways in innate and adaptive immunity[J]. Eur J Immunol, 2016, 46(5): 1082-1090.
|
37 |
Zheng L, Ling W, Zhu DM, et al. Roquin-1 regulates macrophage immune response and participates in hepatic ischemia-reperfusion injury[J]. J Immunol, 2020, 204(5): 1322-1333.
|
38 |
Li TT, Luo YH, Yang H, et al. FBXW5 aggravates hepatic ischemia/reperfusion injury via promoting phosphorylation of ASK1 in a TRAF6-dependent manner[J]. Int Immunopharmacol, 2021, 99: 107928.
|
39 |
Bard JAM, Goodall EA, Greene ER, et al. Structure and function of the 26S proteasome[J]. Annu Rev Biochem, 2018, 87: 697-724.
|
40 |
Collins GA, Goldberg AL. The logic of the 26S proteasome[J]. Cell, 2017, 169(5): 792-806.
|
41 |
Alva N, Panisello-Roselló A, Flores M, et al. Ubiquitin-proteasome system and oxidative stress in liver transplantation[J]. World J Gastroenterol, 2018, 24(31): 3521-3530.
|
42 |
Tan CRC, Abdul-Majeed S, Cael B, et al. Clinical pharmacokinetics and pharmacodynamics of bortezomib[J]. Clin Pharmacokinet, 2019, 58(2): 157-168.
|
43 |
Zaouali MA, Bardag-Gorce F, Carbonell T, et al. Proteasome inhibitors protect the steatotic and non-steatotic liver graft against cold ischemia reperfusion injury[J]. Exp Mol Pathol, 2013, 94(2): 352-359.
|
44 |
Bejaoui M, Zaouali MA, Folch-Puy E, et al. Bortezomib enhances fatty liver preservation in Institut George Lopez-1 solution through adenosine monophosphate activated protein kinase and Akt/mTOR pathways[J]. J Pharm Pharmacol, 2014, 66(1): 62-72.
|
45 |
Panisello-Rosello A, Verde E, Zaouali MA, et al. The relevance of the UPS in fatty liver graft preservation: a new approach for IGL-1 and HTK solutions[J]. Int J Mol Sci, 2017, 18(11): 2287.
|
46 |
Bailey-Elkin BA, Knaap RCM, Kikkert M, et al. Structure and function of viral deubiquitinating enzymes[J]. J Mol Biol, 2017, 429(22): 3441-3470.
|
47 |
Tobias JW, Varshavsky A. Cloning and functional analysis of the ubiquitin-specific protease gene UBP1 of Saccharomyces cerevisiae[J]. J Biol Chem, 1991, 266(18): 12021-12028.
|
48 |
Wolberger C. Mechanisms for regulating deubiquitinating enzymes[J]. Protein Sci, 2014, 23(4): 344-353.
|
49 |
Zhao YC, Wang F, Gao LC, et al. Ubiquitin-specific protease 4 is an endogenous negative regulator of metabolic dysfunctions in nonalcoholic fatty liver disease in mice[J]. Hepatology, 2018, 68(3): 897-917.
|
50 |
Zhou JQ, Qiu T, Wang TY, et al. USP4 deficiency exacerbates hepatic ischaemia/reperfusion injury via TAK1 signalling[J]. Clin Sci (Lond), 2019, 133(2): 335-349.
|
51 |
Zhou JQ, Wang TY, Chen ZB, et al. Ubiquitin-specific peptidase 10 protects against hepatic ischaemic/reperfusion injury via TAK1 signalling[J]. Front Immunol, 2020, 11: 506275.
|
52 |
Luo PC, Qin C, Zhu LH, et al. Ubiquitin-specific peptidase 10 (USP10) inhibits hepatic steatosis, insulin resistance, and inflammation through sirt6[J]. Hepatology, 2018, 68(5): 1786-1803.
|
53 |
Lai KP, Cheung AHY, Tse WKF. Deubiquitinase Usp18 prevents cellular apoptosis from oxidative stress in liver cells[J]. Cell Biol Int, 2017, 41(8): 914-921.
|
54 |
Schneider M, Zimmermann AG, Roberts RA, et al. The innate immune sensor NLRC3 attenuates Toll-like receptor signaling via modification of the signaling adaptor TRAF6 and transcription factor NF-kappaB[J]. Nat Immunol, 2012, 13(9): 823-831.
|
55 |
Li ZT, Liu H, Zhang WQ. NLRC3 alleviates hypoxia/reoxygenation induced inflammation in RAW264.7 cells by inhibiting K63-linked ubiquitination of TRAF6[J]. Hepatobiliary Pancreat Dis Int, 2020, 19(5): 455-460.
|
56 |
Zhao Y, Majid MC, Soll JM, et al. Noncanonical regulation of alkylation damage resistance by the OTUD4 deubiquitinase[J]. EMBO J, 2015, 34(12): 1687-1703.
|
57 |
Liu H, Fan J, Zhang WQ, et al. OTUD4 alleviates hepatic ischemia-reperfusion injury by suppressing the K63-linked ubiquitination of TRAF6[J]. Biochem Biophys Res Commun, 2020, 523(4): 924-930.
|
58 |
Wang Q, Wei S, Li L, et al. TGR5 deficiency aggravates hepatic ischemic/reperfusion injury via inhibiting SIRT3/FOXO3/HIF-1a pathway[J]. Cell Death Discov, 2020, 6(1): 116.
|