切换至 "中华医学电子期刊资源库"

中华移植杂志(电子版) ›› 2022, Vol. 16 ›› Issue (01) : 49 -54. doi: 10.3877/cma.j.issn.1674-3903.2022.01.009

综述

泛素-蛋白酶体系统在肝缺血再灌注损伤中的研究进展
郭嘉瑜1, 邱涛1,(), 喻博1   
  1. 1. 430060 武汉大学人民医院器官移植科
  • 收稿日期:2021-11-04 出版日期:2022-02-25
  • 通信作者: 邱涛
  • 基金资助:
    国家自然科学基金项目(81870067,82170664); 武汉市科技局项目(2020020601012213)

Research progress of ubiquitin-proteasome system in hepatic ischemia-reperfusion injury

Jiayu Guo1, Tao Qiu1,(), Bo Yu1   

  1. 1. Department of Transplantation, Renmin Hospital of Wuhan University, Wuhan 430060, China
  • Received:2021-11-04 Published:2022-02-25
  • Corresponding author: Tao Qiu
引用本文:

郭嘉瑜, 邱涛, 喻博. 泛素-蛋白酶体系统在肝缺血再灌注损伤中的研究进展[J]. 中华移植杂志(电子版), 2022, 16(01): 49-54.

Jiayu Guo, Tao Qiu, Bo Yu. Research progress of ubiquitin-proteasome system in hepatic ischemia-reperfusion injury[J]. Chinese Journal of Transplantation(Electronic Edition), 2022, 16(01): 49-54.

泛素-蛋白酶体系统(UPS)是细胞内三磷酸腺苷依赖的非溶酶体选择性蛋白质降解系统,在很多信号传导通路中均发挥作用,可调节多种细胞生物学过程(如细胞周期、信号传导、细胞凋亡、DNA损伤修复及基因表达等)。肝缺血再灌注损伤(HIRI)是肝移植和肝切除术中常见的病理现象,也是影响患者预后的重要因素。近年来,越来越多的研究开始聚焦于UPS在HIRI发生和发展过程中的作用,这为临床治疗和预防HIRI提供了新的思路和潜在治疗靶点。本文就近年来UPS在HIRI中的研究进展作一综述。

Ubiquitin-proteasome system (UPS) is an adenosine triphosphate-dependent non-lysosomal protein degradation system in cells. It plays a role in many signal transduction pathways and can regulate a variety of cell biological processes, such as cell cycle regulation, signal transduction, apoptosis, DNA repair and gene expression and so on. Hepatic ischemia-reperfusion injury (HIRI) is a common pathophysiological phenomenon of liver transplantation and hepatectomy, which is one of the most important factors affecting the prognosis of patients. Recently, more and more studies have begun to focus on the role of UPS in the occurrence and development of HIRI, which provides new ideas and potential therapeutic targets for the clinical treatment and prevention of HIRI. This paper will review the research progress of UPS in HIRI.

1
Dar WA, Sullivan E, Bynon JS, et al. Ischaemia reperfusion injury in liver transplantation: cellular and molecular mechanisms[J]. Liver Int, 2019, 39(5): 788-801.
2
Konishi T, Lentsch AB. Hepatic ischemia/reperfusion: mechanisms of tissue injury, repair, and regeneration[J]. Gene Expr, 2017, 17(4): 277-287.
3
Zhou J, Chen J, Wei Q, et al. The role of ischemia/reperfusion injury in early hepatic allograft dysfunction[J]. Liver Transpl, 2020, 26(8): 1034-1048.
4
Padrissa-Altes S, Zaouali MA, Bartrons R, et al. Ubiquitin-proteasome system inhibitors and AMPK regulation in hepatic cold ischaemia and reperfusion injury: possible mechanisms[J]. Clin Sci (Lond), 2012, 123(2): 93-98.
5
Kwon YT, Ciechanover A. The ubiquitin code in the ubiquitin-proteasome system and autophagy[J]. Trends Biochem Sci, 2017, 42(11): 873-886.
6
Park J, Cho J, Song EJ. Ubiquitin-proteasome system (UPS) as a target for anticancer treatment[J]. Arch Pharm Res, 2020, 43(11): 1144-1161.
7
Spanig S, Kellermann K, Dieterlen MT, et al. The ubiquitin proteasome system in ischemic and dilated cardiomyopathy[J]. Int J Mol Sci, 2019, 20(24): 6354.
8
Cao J, Zhong MB, Toro CA, et al. Endo-lysosomal pathway and ubiquitin-proteasome system dysfunction in Alzheimer′s disease pathogenesis[J]. Neurosci Lett, 2019, 703: 68-78.
9
Luza S, Opazo CM, Bousman CA, et al. The ubiquitin proteasome system and schizophrenia[J]. Lancet Psychiatry, 2020, 7(6): 528-537.
10
Nam T, Han JH, Devkota S, et al. Emerging paradigm of crosstalk between autophagy and the ubiquitin-proteasome system[J]. Mol Cells, 2017, 40(12): 897-905.
11
Pohl C, Dikic I. Cellular quality control by the ubiquitin-proteasome system and autophagy[J]. Science, 2019, 366(6467): 818-822.
12
Varshavsky A. The ubiquitin system, autophagy, and regulated protein degradation[J]. Annu Rev Biochem, 2017, 86: 123-128.
13
Zheng N, Shabek N. Ubiquitin ligases: structure, function, and regulation[J]. Annu Rev Biochem, 2017, 86: 129-157.
14
Rotin D, Kumar S. Physiological functions of the HECT family of ubiquitin ligases[J]. Nat Rev Mol Cell Biol, 2009, 10(6): 398-409.
15
Xu L, Fan J, Wang Y, et al. An activity-based probe developed by a sequential dehydroalanine formation strategy targets HECT E3 ubiquitin ligases[J]. Chem Commun (Camb), 2019, 55(49): 7109-7112.
16
Zhou W, Zhong ZB, Lin DN, et al. Hypothermic oxygenated perfusion inhibits HECTD3-mediated TRAF3 polyubiquitination to alleviate DCD liver ischemia-reperfusion injury[J]. Cell Death Dis, 2021, 12(2): 211.
17
Hu JF, Zhu XH, Zhang XJ, et al. Targeting TRAF3 signaling protects against hepatic ischemia/reperfusions injury[J]. J Hepatol, 2016, 64(1): 146-159.
18
Jiang QY, Li FB, Cheng Z, et al. The role of E3 ubiquitin ligase HECTD3 in cancer and beyond[J]. Cell Mol Life Sci, 2020, 77(8): 1483-1495.
19
Jiang WW, Kong LL, Ni QF, et al. miR-146a ameliorates liver ischemia/reperfusion injury by suppressing IRAK1 and TRAF6[J]. PLoS One, 2014, 9(7): e101530.
20
Huang ZT, Zheng DF, Pu JL, et al. MicroRNA-125b protects liver from ischemia/reperfusion injury via inhibiting TRAF6 and NF-kappaB pathway[J]. Biosci Biotechnol Biochem, 2019, 83(5): 829-835.
21
Xu XL, Zhang ZC, Lu YJ, et al. ARRB1 ameliorates liver ischaemia/reperfusion injury via antagonizing TRAF6-mediated Lysine 6-linked polyubiquitination of ASK1 in hepatocytes[J]. J Cell Mol Med, 2020, 24(14): 7814-7828.
22
Luo YH, Huang ZT, Zong KZ, et al. miR-194 ameliorates hepatic ischemia/reperfusion injury via targeting PHLDA1 in a TRAF6-dependent manner[J]. Int Immunopharmacol, 2021, 96: 107604.
23
Detry O, Deroover A, Meurisse N, et al. Donor age as a risk factor in donation after circulatory death liver transplantation in a controlled withdrawal protocol programme[J]. Br J Surg, 2014, 101(7): 784-792.
24
Li Y, Ruan DY, Jia CC, et al. Aging aggravates hepatic ischemia-reperfusion injury in mice by impairing mitophagy with the involvement of the EIF2alpha-parkin pathway[J]. Aging (Albany NY), 2018, 10(8): 1902-1920.
25
Ning XJ, Yan X, Wang YF, et al. Parkin deficiency elevates hepatic ischemia/reperfusion injury accompanying decreased mitochondrial autophagy, increased apoptosis, impaired DNA damage repair and altered cell cycle distribution[J]. Mol Med Rep, 2018, 18(6): 5663-5668.
26
Gladkova C, Maslen SL, Skehel JM, et al. Mechanism of parkin activation by PINK1[J]. Nature, 2018, 559(7714): 410-414.
27
Gu J, Zhang T, Guo JR, et al. PINK1 activation and translocation to mitochondria-associated membranes mediates mitophagy and protects against hepatic ischemia/reperfusion injury[J]. Shock, 2020, 54(6): 783-793.
28
Saidi RF, Rajeshkumar B, Shariftabrizi A, et al. Human adipose-derived mesenchymal stem cells attenuate liver ischemia-reperfusion injury and promote liver regeneration[J]. Surgery, 2014, 156(5): 1225-1231.
29
Pan GZ, Yang Y, Zhang J, et al. Bone marrow mesenchymal stem cells ameliorate hepatic ischemia/reperfusion injuries via inactivation of the MEK/ERK signaling pathway in rats[J]. J Surg Res, 2012, 178(2): 935-948.
30
Sun CK, Chang CL, Lin YC, et al. Systemic administration of autologous adipose-derived mesenchymal stem cells alleviates hepatic ischemia-reperfusion injury in rats[J]. Crit Care Med, 2012, 40(4): 1279-1290.
31
Zheng J, Chen L, Lu TY, et al. MSCs ameliorate hepatocellular apoptosis mediated by PINK1-dependent mitophagy in liver ischemia/reperfusion injury through AMPKα activation[J]. Cell Death Dis, 2020, 11(4): 256.
32
Bai X, Zhang YL, Liu LN. Inhibition of TRIM8 restrains ischaemia-reperfusion-mediated cerebral injury by regulation of NF-kappaB activation associated inflammation and apoptosis[J]. Exp Cell Res, 2020, 388(2): 111818.
33
Yan FJ, Zhang XJ, Wang WX, et al. The E3 ligase tripartite motif 8 targets TAK1 to promote insulin resistance and steatohepatitis[J]. Hepatology, 2017, 65(5): 1492-1511.
34
Qiu T, Wang TY, Zhou JQ, et al. Tripartite motif 8 deficiency relieves hepatic ischaemia/reperfusion injury via TAK1-dependent signalling pathways[J]. Int J Biol Sci, 2019, 15(8): 1618-1629.
35
Chen SY, Zhang HP, Li J, et al. Tripartite motif-containing 27 attenuates liver ischemia/reperfusion injury by suppressing transforming growth factor beta-activated kinase 1 (TAK1) by TAK1 binding protein 2/3 degradation[J]. Hepatology, 2021, 73(2): 738-758.
36
Athanasopoulos V, Ramiscal RR, Vinuesa CG. ROQUIN signalling pathways in innate and adaptive immunity[J]. Eur J Immunol, 2016, 46(5): 1082-1090.
37
Zheng L, Ling W, Zhu DM, et al. Roquin-1 regulates macrophage immune response and participates in hepatic ischemia-reperfusion injury[J]. J Immunol, 2020, 204(5): 1322-1333.
38
Li TT, Luo YH, Yang H, et al. FBXW5 aggravates hepatic ischemia/reperfusion injury via promoting phosphorylation of ASK1 in a TRAF6-dependent manner[J]. Int Immunopharmacol, 2021, 99: 107928.
39
Bard JAM, Goodall EA, Greene ER, et al. Structure and function of the 26S proteasome[J]. Annu Rev Biochem, 2018, 87: 697-724.
40
Collins GA, Goldberg AL. The logic of the 26S proteasome[J]. Cell, 2017, 169(5): 792-806.
41
Alva N, Panisello-Roselló A, Flores M, et al. Ubiquitin-proteasome system and oxidative stress in liver transplantation[J]. World J Gastroenterol, 2018, 24(31): 3521-3530.
42
Tan CRC, Abdul-Majeed S, Cael B, et al. Clinical pharmacokinetics and pharmacodynamics of bortezomib[J]. Clin Pharmacokinet, 2019, 58(2): 157-168.
43
Zaouali MA, Bardag-Gorce F, Carbonell T, et al. Proteasome inhibitors protect the steatotic and non-steatotic liver graft against cold ischemia reperfusion injury[J]. Exp Mol Pathol, 2013, 94(2): 352-359.
44
Bejaoui M, Zaouali MA, Folch-Puy E, et al. Bortezomib enhances fatty liver preservation in Institut George Lopez-1 solution through adenosine monophosphate activated protein kinase and Akt/mTOR pathways[J]. J Pharm Pharmacol, 2014, 66(1): 62-72.
45
Panisello-Rosello A, Verde E, Zaouali MA, et al. The relevance of the UPS in fatty liver graft preservation: a new approach for IGL-1 and HTK solutions[J]. Int J Mol Sci, 2017, 18(11): 2287.
46
Bailey-Elkin BA, Knaap RCM, Kikkert M, et al. Structure and function of viral deubiquitinating enzymes[J]. J Mol Biol, 2017, 429(22): 3441-3470.
47
Tobias JW, Varshavsky A. Cloning and functional analysis of the ubiquitin-specific protease gene UBP1 of Saccharomyces cerevisiae[J]. J Biol Chem, 1991, 266(18): 12021-12028.
48
Wolberger C. Mechanisms for regulating deubiquitinating enzymes[J]. Protein Sci, 2014, 23(4): 344-353.
49
Zhao YC, Wang F, Gao LC, et al. Ubiquitin-specific protease 4 is an endogenous negative regulator of metabolic dysfunctions in nonalcoholic fatty liver disease in mice[J]. Hepatology, 2018, 68(3): 897-917.
50
Zhou JQ, Qiu T, Wang TY, et al. USP4 deficiency exacerbates hepatic ischaemia/reperfusion injury via TAK1 signalling[J]. Clin Sci (Lond), 2019, 133(2): 335-349.
51
Zhou JQ, Wang TY, Chen ZB, et al. Ubiquitin-specific peptidase 10 protects against hepatic ischaemic/reperfusion injury via TAK1 signalling[J]. Front Immunol, 2020, 11: 506275.
52
Luo PC, Qin C, Zhu LH, et al. Ubiquitin-specific peptidase 10 (USP10) inhibits hepatic steatosis, insulin resistance, and inflammation through sirt6[J]. Hepatology, 2018, 68(5): 1786-1803.
53
Lai KP, Cheung AHY, Tse WKF. Deubiquitinase Usp18 prevents cellular apoptosis from oxidative stress in liver cells[J]. Cell Biol Int, 2017, 41(8): 914-921.
54
Schneider M, Zimmermann AG, Roberts RA, et al. The innate immune sensor NLRC3 attenuates Toll-like receptor signaling via modification of the signaling adaptor TRAF6 and transcription factor NF-kappaB[J]. Nat Immunol, 2012, 13(9): 823-831.
55
Li ZT, Liu H, Zhang WQ. NLRC3 alleviates hypoxia/reoxygenation induced inflammation in RAW264.7 cells by inhibiting K63-linked ubiquitination of TRAF6[J]. Hepatobiliary Pancreat Dis Int, 2020, 19(5): 455-460.
56
Zhao Y, Majid MC, Soll JM, et al. Noncanonical regulation of alkylation damage resistance by the OTUD4 deubiquitinase[J]. EMBO J, 2015, 34(12): 1687-1703.
57
Liu H, Fan J, Zhang WQ, et al. OTUD4 alleviates hepatic ischemia-reperfusion injury by suppressing the K63-linked ubiquitination of TRAF6[J]. Biochem Biophys Res Commun, 2020, 523(4): 924-930.
58
Wang Q, Wei S, Li L, et al. TGR5 deficiency aggravates hepatic ischemic/reperfusion injury via inhibiting SIRT3/FOXO3/HIF-1a pathway[J]. Cell Death Discov, 2020, 6(1): 116.
[1] 李坤河, 寇萌佳, 邝立挺. 肝移植术后二次气管插管的危险因素及预测模型的建立[J]. 中华普通外科学文献(电子版), 2023, 17(05): 366-371.
[2] 中华医学会器官移植学分会, 中国医师协会器官移植医师分会, 上海医药行业协会. 中国肝、肾移植受者霉酚酸类药物应用专家共识(2023版)[J]. 中华移植杂志(电子版), 2023, 17(05): 257-272.
[3] 陆闻青, 陈昕怡, 任雪飞. 遗传代谢病儿童肝移植受者术后生活质量调查研究[J]. 中华移植杂志(电子版), 2023, 17(05): 287-292.
[4] 范铁艳, 李君, 陈虹. 肝移植术后新发戊型病毒性肝炎的诊治经验[J]. 中华移植杂志(电子版), 2023, 17(05): 293-296.
[5] 陈朔, 陈峰, 程飞, 项捷. 糖原累积病Ⅰ型并发胰腺炎肝移植术后胰腺梗死一例[J]. 中华移植杂志(电子版), 2023, 17(05): 300-302.
[6] 汤鹏昊, 张武. 肠道微生态与肝移植围手术期并发症相关研究进展[J]. 中华移植杂志(电子版), 2023, 17(05): 303-307.
[7] 严庆, 刘颖, 邓斐文, 陈焕伟. 微血管侵犯对肝癌肝移植患者生存预后的影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 624-629.
[8] 廖梅, 张红君, 金洁玚, 吕艳, 任杰. 床旁超声造影对肝移植术后早期肝动脉血栓的诊断价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 630-634.
[9] 李秉林, 吕少诚, 潘飞, 姜涛, 樊华, 寇建涛, 贺强, 郎韧. 供肝灌注液病原菌与肝移植术后早期感染的相关性分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 656-660.
[10] 吕垒, 冯啸, 何凯明, 曾凯宁, 杨卿, 吕海金, 易慧敏, 易述红, 杨扬, 傅斌生. 改良金氏评分在儿童肝豆状核变性急性肝衰竭肝移植手术时机评估中价值并文献复习[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 661-668.
[11] 王孟龙. 肿瘤生物学特征在肝癌肝移植治疗中的意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 490-494.
[12] 王晓东, 汪恺, 葛昭, 丁忠祥, 徐骁. 计算机视觉技术在肝癌肝移植疗效提升中的研究进展[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 361-366.
[13] 关明函, 薛志强. 右美托咪定改善大鼠脑缺血再灌注后脑损伤的研究[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 270-276.
[14] 张敏洁, 张小杉, 段莎莎, 施依璐, 赵捷, 白天昊, 王雅晳. 氢气治疗心肌缺血再灌注损伤的作用机制及展望[J]. 中华临床医师杂志(电子版), 2023, 17(06): 744-748.
[15] 张敏洁, 王雅晳, 段莎莎, 施依璐, 付文艳, 赵海玥, 张小杉. 基于GEO数据库和生物信息学分析筛选大鼠心肌缺血再灌注损伤相关潜在通路和靶点[J]. 中华临床医师杂志(电子版), 2023, 17(04): 438-445.
阅读次数
全文


摘要