1 |
Boslett J, Hemann C, Christofi FL, et al. Characterization of CD38 in the major cell types of the heart: endothelial cells highly express CD38 with activation by hypoxia-reoxygenation triggering NAD(P)H depletion[J]. Am J Physiol Cell Physiol, 2018, 314(3): C297-C309.
|
2 |
Al-Salam S, Hashmi S. Myocardial ischemia reperfusion injury: apoptotic, inflammatory and oxidative stress role of Galectin-3[J]. Cell Physiol Biochem, 2018, 50(3): 1123-1139.
|
3 |
Tamborindeguy MT, Matte BF, Ramos GO, et al. NADPH-oxidase-derived ROS alters cell migration by modulating adhesions dynamics[J]. Biol Cell, 2018, 110(10): 225-236.
|
4 |
Tabata S, Yamamoto M, Goto H, et al. Thymidine catabolism promotes NADPH oxidase-derived reactive oxygen species (ROS) signalling in KB and yumoto cells[J]. Sci Rep, 2018, 8(1): 6760.
|
5 |
McLoughlin P. Hypoxic pulmonary vasoconstriction: Building a solid base[J]. Exp Physiol, 2018, 103(9): 1181-1182.
|
6 |
Shafique E, Torina A, Reichert K, et al. Mitochondrial redox plays a critical role in the paradoxical effects of NAPDH oxidase-derived ROS on coronary endothelium[J]. Cardiovasc Res, 2017, 113(2): 234-246.
|
7 |
Chen R, Lai UH, Zhu L, et al. Reactive oxygen species formation in the brain at different oxygen levels: the role of hypoxia inducible factors[J]. Front Cell Dev Biol, 2018, 6: 132.
|
8 |
Bretón-Romero R, Lamas S. Hydrogen peroxide signaling in vascular endothelial cells[J]. Redox Biol, 2014, 2: 529-534.
|
9 |
Lesnefsky EJ, Chen Q, Tandler B, et al. Mitochondrial dysfunction and myocardial ischemia-reperfusion: implications for novel therapies[J]. Annu Rev Pharmacol Toxicol, 2017, 57: 535-565.
|
10 |
Chen YR, Zweier JL. Cardiac mitochondria and reactive oxygen speciesgeneration[J]. Circ Res, 2014, 114(3): 524-537.
|
11 |
Wang Z, Zhao H, Guan W, et al. Metabolic memory in mitochondrial oxidative damage triggers diabetic retinopathy[J]. BMC Ophthalmol, 2018, 18(1): 258.
|
12 |
Bottje WG. Oxidative metabolism and efficiency: the delicate balancing act of mitochondria[J]. Poult Sci, 2018. [Epub ahead of print]
|
13 |
Kalogeris T, Bao Y, Korthuis RJ. Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning[J]. Redox Biol, 2014, 2: 702-714.
|
14 |
Tkatch T, Greotti E, Baranauskas G, et al. Optogenetic control of mitochondrial metabolism and Ca2+ signaling by mitochondria-targeted opsins[J]. Proc Natl Acad Sci USA, 2017, 114(26): E5167-E5176.
|
15 |
Schumacker PT, Gillespie MN, Nakahira K, et al. Mitochondria in lung biology and pathology: more than just a powerhouse[J]. Am J Physiol Lung Cell Mol Physiol, 2014, 306(11): 962-974.
|
16 |
Cha MY, Kim DK, Mook-Jung I. The role of mitochondrial DNA mutation on neurodegenerative diseases[J]. Exp Mol Med, 2015, 47(3): e150
|
17 |
Brenner C, Galluzzi L, Kepp O, et al. Decoding cell death signals in liver inflammation[J]. J Hepatol, 2013, 59(3): 583-594.
|
18 |
Kalkavan H, Green DR. MOMP, cell suicide as a BCL-2 family business[J]. Cell Death Differ, 2018, 25(1): 46-55.
|
19 |
Zhang CX, Cheng Y, Liu DZ, et al. Mitochondria-targeted cyclosporin A delivery system to treat myocardial ischemia reperfusion injury of rats[J]. J Nanobiotechnology, 2019, 17(1): 18.
|
20 |
Elrod JW, Molkentin JD. Physiologic functions of cyclophilin D and the mitochondrial permeability transition pore[J]. Circ J, 2013, 77(5): 1111-1122.
|
21 |
Mnatsakanyan N, Beutner G, Porter GA, et al. Physiological roles of the mitochondrial permeability transition pore[J]. J Bioenerg Biomembr, 2017, 49(1): 13-25.
|
22 |
Hom JR, Quintanilla RA, Hoffman DL, et al.The permeability transition pore controls cardiac mitochondrial maturation and myocyte differentiation[J]. Dev Cell, 2011, 21(3): 469-478.
|
23 |
Xiao Y, Karam C, Yi J, et al. ROS-related mitochondrial dysfunction in skeletal muscle of an ALS mouse model during the disease progression[J]. Pharmacol Res, 2018, 138: 25-26.
|
24 |
Bingol B, Sheng M. Mechanisms of mitophagy: PINK1, Parkin, USP30 and beyond[J]. Free Radic Biol Med, 2016, 100: 210-222.
|
25 |
Cascella R, Fani G, Capitini C, et al. Quantitative assessment of the degradation of aggregated TDP-43 mediated by the ubiquitin proteasome system and macroautophagy[J]. FASEB J, 2017, 31(12): 5609-5624.
|
26 |
Hamacher-Brady A, Brady NR. Mitophagy programs: mechanisms and physiological implications of mitochondrial targeting by autophagy[J]. Cell Mol Life Sci, 2016, 73(4):775-795.
|
27 |
Mohsenin V. The emerging role of microRNAs in hypoxia-induced pulmonary hypertension[J]. Sleep Breath, 2016, 20(3): 1059-1067.
|
28 |
Xiong Y, Yao H, Cheng Y, et al. Effects of monoacylglycerol lipase inhibitor URB602 on lung ischemia-reperfusion injury in mice[J]. Biochem Biophys Res Commun, 2018. [Epub ahead of print]
|
29 |
Yang CF. Clinical manifestations and basic mechanisms of myocardial ischemia/reperfusion injury[J]. Ci Ji Yi Xue Za Zhi, 2018, 30(4): 209-215.
|
30 |
Obadia N, Lessa MA, Daliry A, et al. Cerebral microvascular dysfunction in metabolic syndrome is exacerbated by ischemia-reperfusion injury[J]. BMC Neurosci, 2017, 18(1): 67
|
31 |
Granger DN, Kvietys PR. Reperfusion injury and reactive oxygen species: the evolution of a concept[J]. Redox Biol, 2015, 6:524-551.
|
32 |
Yip W, Ghodoussipour S, Bhanvadia S. Acute lung injury following penile ischemia and reperfusion[J]. Urol Case Rep, 2018, 22: 23-24.
|
33 |
Waypa GB, Smith KA, Schumacker. O2 sensing, mitochondria and ROS sig-naling: the fog is lifting[J]. Mol Aspects Med, 2016, 47-48: 76-89.
|
34 |
Zhou R, Yazdi AS, Menu P, et al. A role for mitochondria in NLRP3 in ammasome activation[J]. Nature, 2011,469(7329): 221-225.
|
35 |
Gu X, Wu G, Yao Y, et al. Intratracheal administration of mitochondrial DNA directly provokes lung in ammation through the TLR9-p38 MAPK pathway[J]. Free Radic Biol Med, 2015, 83: 149-158.
|
36 |
Sun L, Liao K, Wang D. Honokiol induces superoxide production by targeting mitochondrial respiratory chain complex Ⅰ in Candida albicans[J]. PLoS One, 2017, 12(8): e0184003.
|
37 |
Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species(ros) and ros-induced ros release[J]. Physiol Rev, 2014, 94(3): 909-950.
|
38 |
Gilardini Montani MS, Santarelli R, Granato M, et al. EBV reduces autophagy, intracellular ROS and mitochondria to impair monocyte survival and differentiation[J]. Autophagy, 2018. [Epub ahead of print]
|
39 |
Liu CX, Tan YR, Xiang Y, et al. Hydrogen sulfide protects against chemical hypoxia-induced injury via attenuation of ROS-mediated Ca2+ overload and mitochondrial dysfunction in human bronchial epithelial cells[J]. Biomed Res Int, 2018, 2018: 2070971.
|
40 |
Newton K, Manning G. Necroptosis and Inflammation[J]. Annu Rev Biochem, 2016, 85(1): 743-763.
|
41 |
Forgiarini LA Jr, Grün G, Kretzmann NA, et al. When is injury potentially reversible in a lung ischemia-reperfusion model?[J]. J Surg Res, 2013, 179(1): 168-174.
|
42 |
Sepehr R, Staniszewski K, Maleki S, et al. Optical imaging of tissue mitochondrialredox state in intact rat lungs in two models of pulmonary oxidative stress[J]. J Biomed Opt, 2012, 17(4): 046010.
|
43 |
Yeh DY, Fu YH, Yang YC, et al. Resveratrol alleviates lung ischemia and reperfusion induced pulmonary capillary injury through modulating pulmonary mitochondrial metabolism[J]. Transplant Proc, 2014, 46(4): 1131-1134.
|
44 |
Sommer SP, Sommer S, Sinha B, et al. Ischemia-reperfusion injury-induced pulmonary mitochondrial damage[J]. J Heart Lung Transplant, 2011, 30(7): 811-818.
|
45 |
Qiu W, Gu H, Zheng L, et al. Pretreatment with edaravone reduces lung mitochondrial damage in an infant rabbit ischemia-reperfusion model[J]. J Pediatr Surg, 2008, 43(11): 2053-2060.
|
46 |
Ohsawa I, Ishikawa M, Takahashi K, et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals[J]. Nat Med, 2007, 13(6) : 688-694.
|
47 |
黄俊隆,刘文武,孙学军. 氢气在缺血再灌注损伤性疾病及器官移植中的研究进展[J].解剖学报,2018, 49(3):406-411.
|
48 |
Kawamura T, Huang C, Peng X, et al. The effect of donor treatment with hydrogen on lung allograft function in rats[J]. Surgery, 2011, 150(2): 240-249.
|
49 |
Nishida T, Hayashi T, Inamoto T, et al. Dual gas treatmengt wih hydrogen and carbon monoxide attenuates oxidative stress and protects from renal ischemia-reperfusion injury[J]. Transplant Proc, 2018, 50(1): 250-258.
|
50 |
Sayaka S, Chisato I, Fumiko H, et al. Molecular hydrogen modulates gene expression via histone modification and induces the mitochondrial unfolded protein response[J]. Biochem Biophys Res Commun, 2017, 493(1): 318-324.
|
51 |
Setsukinai K, Urano Y, Kakinuma K, et al. Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species[J]. J Biol Chem, 2003, 278(5): 3170-3175.
|
52 |
Ohsawa I, Ishikawa M, Takahashi K, et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals[J]. Nature Medicine, 2007, 13(6): 688-694.
|
53 |
Sayaka S, Chisato I, Fumiko H, et al. Molecular hydrogen modulates gene expression via histone modification and induces the mitochondrial unfolded protein response[J]. Biochem Biophys Res Commun, 2017, 493(1):318-324.
|