[1] |
Ye Q, Ling S, Zheng S, et al. Liquid biopsy in hepatocellular carcinoma: circulating tumor cells and circulating tumor DNA[J]. Mol Cancer, 2019, 18(1): 114.
|
[2] |
Jiang P, Chan KCA, Lo YMD. Liver-derived cell-free nucleic acids in plasma: Biology and applications in liquid biopsies[J]. J Hepatol, 2019, 71(2): 409-421.
|
[3] |
Shen SY, Singhania R, Fehringer G, et al. Sensitive tumour detection and classification using plasma cell-free DNA methylomes[J]. Nature, 2018, 563(7732): 579-583.
|
[4] |
Best MG, Vancura A, Wurdinger T. Platelet RNA as a circulating biomarker trove for cancer diagnostics[J]. J Thromb Haemost, 2017, 15(7): 1295-1306.
|
[5] |
Xu RH, Wei W, Krawczyk M, et al. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma[J]. Nat Mater, 2017, 16(11): 1155-1161.
|
[6] |
Gao Q, Zhu H, Dong L, et al. Integrated proteogenomic characterization of HBV-related hepatocellular carcinoma[J]. Cell, 2019, 179(5): 561-577.
|
[7] |
Xu X, Lu D, Ling Q, et al. Liver transplantation for hepatocellular carcinoma beyond the Milan criteria[J]. Gut, 2016, 65(6): 1035-1041.
|
[8] |
Chaiteerakij R, Zhang X, Addissie BD, et al. Combinations of biomarkers and Milan criteria for predicting hepatocellular carcinoma recurrence after liver transplantation[J]. Liver Transpl, 2015, 21(5): 599-606.
|
[9] |
李靖,朱文良,康鑫鑫,等. 经肝动脉化疗栓塞联合射频消融治疗原发性肝癌的预后影响因素及预测模型[J]. 中华肿瘤杂志,2017, 39(10): 787-791 .
|
[10] |
Henrie AM, Wittstrom K, Delu A, et al. Evaluation of liver biomarkers as prognostic factors for outcomes to yttrium-90 radioembolization of primary and secondary liver malignancies[J]. Cancer Biother Radiopharm, 2015, 30(7): 305-309.
|
[11] |
Canale M, Ulivi P, Foschi FG, et al. Clinical and circulating biomarkers of survival and recurrence after radiofrequency ablation in patients with hepatocellular carcinoma[J]. Crit Rev Oncol Hematol, 2018, 129: 44-53.
|
[12] |
Puig-Gay N, Jacobs-Cacha C, Sellares J, et al. Apolipoprotein A-Ib as a biomarker of focal segmental glomerulosclerosis recurrence after kidney transplantation: diagnostic performance and assessment of its prognostic value-a multi-centre cohort study[J]. Transpl Int, 2019, 32(3): 313-322.
|
[13] |
Serrano M, Martínez-Flores JA, Pérez D et al. Immune complexes of beta-2-glicoprotein Ⅰ bounded to IgA: a novel marker able to predict thrombosis after renal transplantation in patients with antiphospholipid antibodies[J]. Circulation, 2017, 135(20): 1922-1934.
|
[14] |
Kato TS, Cheema FH, Yang J, et al. Preoperative serum albumin levels predict 1-year postoperative survival of patients undergoing heart transplantation[J]. Circ Heart Fail, 2013, 6(4): 785-791.
|
[15] |
Kim CY, Kim SY, Song JH, et al. Usefulness of the preoperative prognostic nutritional index score as a predictor of the outcomes of lung transplantation: a single-institution experience[J]. Clin Nutr, 2019, 38(5): 2423-2429.
|
[16] |
Nishimura H, Yamada Y, Hisano S, et al. Long-term desensitization for ABO-incompatible living related kidney transplantation recipients with high refractory and rebound anti-blood type antibody: case report[J]. BMC Nephrol, 2018, 19(1): 254.
|
[17] |
Hosgood SA, Nicholson ML. An assessment of urinary biomarkers in a series of declined human kidneys measured during ex vivo normothermic kidney perfusion[J]. Transplantation, 2017, 101(9): 2120-2125.
|
[18] |
Verhoeven CJ, Farid WR, de Jonge J, et al. Biomarkers to assess graft quality during conventional and machine preservation in liver transplantation[J]. J Hepatol, 2014, 61(3): 672-684.
|
[19] |
Herath S, Erlich J, Au AYM, et al. Advances in detection of kidney transplant injury[J]. Mol Diagn Ther, 2019, 23(3): 333-351.
|
[20] |
De Vlaminck I, Martin L, Kertesz M, et al. Noninvasive monitoring of infection and rejection after lung transplantation[J]. Proc Natl Acad Sci U S A, 2015, 112(43): 13336-13341.
|
[21] |
De Vlaminck I, Valantine HA, Snyder TM, et al. Circulating cell-free DNA enables noninvasive diagnosis of heart transplant rejection[J]. Sci Transl Med, 2014, 6(241): 241ra77.
|
[22] |
Suthanthiran M, Schwartz JE, Ding R, et al. Urinary-cell mRNA profile and acute cellular rejection in kidney allografts[J]. N Engl J Med, 2013, 369(1): 20-31.
|
[23] |
Hricik DE, Nickerson P, Formica RN, et al. Multicenter validation of urinary CXCL9 as a risk-stratifying biomarker for kidney transplant injury[J]. Am J Transplant, 2013, 13(10): 2634-2644.
|
[24] |
Schiffer L, Wiehler F, Brasen JH, et al. Chemokine CXCL13 as a new systemic biomarker for B-Cell involvement in acute T cell-mediated kidney allograft rejection[J]. Int J Mol Sci, 2019, 20(10): E2552.
|
[25] |
Li C, Xu X. Biological functions and clinical applications of exosomal non-coding RNAs in hepatocellular carcinoma[J]. Cell Mol Life Sci, 2019, 76(21): 4203-4219.
|
[26] |
Wang B, Zhu J, Ma X, et al. Platelet activation status in the diagnosis and postoperative prognosis of hepatocellular carcinoma[J]. Clin Chim Acta, 2019, 495: 191-197.
|
[27] |
von Felden J, Heim D, Schulze K, et al. High expression of micro RNA-135A in hepatocellular carcinoma is associated with recurrence within 12 months after resection[J]. BMC cancer, 2017, 17(1): 60.
|
[28] |
Braza F, Brouard S, Chadban S, et al. Role of TLRs and DAMPs in allograft inflammation and transplant outcomes[J]. Nat Rev Nephrol, 2016, 12(5): 281-290.
|
[29] |
Sailliet N, Brosseau C, Robert JM, et al. Role of JAK inhibitors and immune cells in transplantation[J]. Cytokine Growth Factor Rev, 2019, 47: 62-73.
|
[30] |
Fu R, Tajima S, Suetsugu K, et al. Biomarkers for individualized dosage adjustments in immunosuppressive therapy using calcineurin inhibitors after organ transplantation[J]. Acta Pharmacol Sin, 2019, 40(2): 151-159.
|
[31] |
Grigg SE, Sarri GL, Gow PJ, et al. Systematic review with meta-analysis: sirolimus- or everolimus-based immunosuppression following liver transplantation for hepatocellular carcinoma[J]. Aliment Pharmacol Ther, 2019, 49(10): 1260-1273.
|
[32] |
Gomez-Martin C, Bustamante J, Castroagudin JF, et al. Efficacy and safety of sorafenib in combination with mammalian target of rapamycin inhibitors for recurrent hepatocellular carcinoma after liver transplantation[J]. Liver Transpl, 2012, 18(1): 45-52.
|
[33] |
Bhoori S, Toffanin S, Sposito C, et al. Personalized molecular targeted therapy in advanced, recurrent hepatocellular carcinoma after liver transplantation: a proof of principle[J]. J Hepatol, 2010, 52(5): 771-775.
|
[34] |
Jiang Y, Sun A, Zhao Y, et al. Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma[J]. Nature, 2019, 567(7747): 257-261.
|
[35] |
Tovar V, Cornella H, Moeini A, et al. Tumour initiating cells and IGF/FGF signalling contribute to sorafenib resistance in hepatocellular carcinoma[J]. Gut, 2017, 66(3): 530-540.
|
[36] |
Yang C, Xia BR, Jin WL, et al. Circulating tumor cells in precision oncology: clinical applications in liquid biopsy and 3D organoid model[J]. Cancer Cell Int, 2019, 19: 341.
|