1 |
沈家骢. 纳米生物医用材料[J]. 中国医学科学院学报,2006,28(4):472-474.
|
2 |
王嵩. 纳米生物材料人工气管的实验研究[D]. 江苏:扬州大学,2011.
|
3 |
Wright CD, Li S, Geller AD, et al. Postintubation tracheal stenosis: management and results 1993 to 2017[J]. Ann Thorac Surg. 2019.108(5):1471-1477.
|
4 |
James P, Parmar S, Hussain K, et al. Tracheal stenosis after tracheostomy[J]. Br J Oral Maxillofac Surg, 2021,59(1):82-85.
|
5 |
Cooper JD. Surgery of the airway: historic notes[J]. J Thorac Dis, 2016,8(Suppl 2):S113-S120.
|
6 |
Murgu SD, Egressy K, Laxmanan B, et al. Central airway obstruction: benign strictures, tracheobronchomalacia, and malignancy-related obstruction[J]. Chest, 2016,150(2):426-441.
|
7 |
Huang W, Shan Q, Wu Z, et al. Retrievable covered metallic segmented Y airway stent for gastrorespiratory fistula of carina or main bronchi[J]. J Thorac Cardiovasc Surg, 2021,161(5):1664-1671.e2.
|
8 |
Faul JL, Kee ST, Rizk NW. Endobronchial stenting for severe airway obstruction in relapsing polychondritis[J]. Chest, 1999,116(3):825-827.
|
9 |
Herth FJ, Eberhardt R. Airway stent: what is new and what should be discarded[J]. Curr Opin Pulm Med, 2016,22(3): 252-256.
|
10 |
马刚,汪道峰,苏全冠,等. 气管支架置入术治疗肿瘤引起的急性气道狭窄[J]. 癌症杂志,2008,27(8):851-855.
|
11 |
Brennan SA, Ní Fhoghlú C, Devitt BM, et al. Silver nanoparticles and their orthopaedic applications[J]. Bone Joint J, 2015,97-B(5):582-589.
|
12 |
Kumar SSD, Rajendran NK, Houreld NN, et al. Recent advances on silver nanoparticle and biopolymer-based biomaterials for wound healing applications[J]. Int J Biol Macromol, 2018,115:165-175.
|
13 |
Li Z, Jiao D, Zhang W, et al. Antibacterial and antihyperplasia polylactic acid/silver nanoparticles nanofiber membrane-coated airway stent for tracheal stenosis[J]. Colloids Surf B Biointerfaces, 2021,206:111949.
|
14 |
Cao H, Liu X. Silver nanoparticles-modified films versus biomedical device-associated infections[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2010,2(6):670-684.
|
15 |
Wen W, Ma LM, He W, et al. Silver-nanoparticle-coated biliary stent inhibits bacterial adhesion in bacterial cholangitis in swine[J]. Hepatobiliary Pancreat Dis Int, 2016,15(1):87-92.
|
16 |
Zhang H, Chen F, Li Y, et al. The effects of autophagy in rat tracheal epithelial cells induced by silver nanoparticles[J]. Environ Sci Pollut Res Int, 2021,28(22):27565-27576.
|
17 |
Chua M, Chui CK. Probabilistic predictive modelling of carbon nanocomposites for medical implants design[J]. J Mech Behav Biomed Mater, 2015,44:164-172.
|
18 |
De Volder MF, Tawfick SH, Baughman RH, et al. Carbon nanotubes: present and future commercial applications[J]. Science, 2013,339(6119):535-539.
|
19 |
Mackle JN, Blond DJ, Mooney E, et al. In vitro characterization of an electroactive carbon-nanotube-based nanofiber scaffold for tissue engineering[J]. Macromol Biosci, 2011,11(9):1272-1282.
|
20 |
Cheng Q, Rutledge K, Jabbarzadeh E. Carbon nanotube-poly(lactide-co-glycolide) composite scaffolds for bone tissue engineering applications[J]. Ann Biomed Eng, 2013,41(5):904-916.
|
21 |
Chua M, Chui CK, Teo C, et al. Patient-specific carbon nanocomposite tracheal prosthesis[J]. Int J Artif Organs, 2015,38(1):31-38.
|
22 |
Bianco A, Kostarelos K, Prato M. Making carbon nanotubes biocompatible and biodegradable[J]. Chem Commun (Camb), 2011,47(37):10182-10188.
|
23 |
Bendo Demétrio K, Giotti Cioato MJ, Moreschi A, et al. Polydimethylsiloxane/nano calcium phosphate composite tracheal stents: mechanical and physiological properties[J]. J Biomed Mater Res B Appl Biomater, 2019,107(3):545-553.
|
24 |
Thein-Han WW, Shah J, Misra RD. Superior in vitro biological response and mechanical properties of an implantable nanostructured biomaterial: nanohydroxyatite-silicone rubber composite[J]. Acta Biomater, 2009,5(7):2668-2679.
|
25 |
Ohbayashi Y, Miyake M, Nagahata S. A long-term study of implanted artificial hydroxyapatite particles surrounding the carotid artery in adult dogs[J]. Biomaterials, 2000,21(5):501-509.
|
26 |
Dong Y, Liao S, Ngiam M, et al. Degradation behaviors of electrospun resorbable polyester nanofibers[J]. Tissue Eng Part B Rev, 2009,15(3):333-351.
|
27 |
Jundziłł A, Pokrywczyńska M, Adamowicz J, et al. Vascularization potential of electrospun poly(L-lactide-co-caprolactone) scaffold: the impact for tissue engineering[J]. Med Sci Monit, 2017,23:1540-1551.
|
28 |
Komiyama M, Yoshimoto K, Sisido K, et al. Chemistry can make strict and fuzzy controls for bio-systems: DNA nanoarchitectonics and cell-macromolecular nanoarchitectonics[J]. Bull Chem Soc Jpn, 2017,90:967-1004.
|
29 |
Ariga K, Nishikawa M, Mori T, et al. Self-assembly as a key player for materials nanoarchitectonics[J]. Sci Technol Adv Mater, 2019,20(1):51-95.
|
30 |
Zhang S, Xing M, Li B. Biomimetic layer-by-layer self-assembly of nanofilms, nanocoatings, and 3D scaffolds for tissue engineering[J]. Int J Mol Sci, 2018,19(6):1641.
|
31 |
Zhu Y, Gao C, He T, et al. Layer-by-layer assembly to modify poly(l-lactic acid) surface toward improving its cytocompatibility to human endothelial cells[J]. Biomacromolecules, 2003,4(2):446-452.
|
32 |
Liu X, Smith L, Wei G, et al. Surface engineering of nano-fibrous poly(l-lactic acid) scaffolds via self-assembly technique for bone tissue engineering[J]. J Biomed Nanotechnol, 2005,1:54-60.
|
33 |
Gong Y, Zhu Y, Liu Y, et al. Layer-by-layer assembly of chondroitin sulfate and collagen on aminolyzed poly(l-lactic acid) porous scaffolds to enhance their chondrogenesis[J]. Acta Biomater, 2007,3(5):677-685.
|
34 |
Liu X, Wei M, Wang Q, et al. Capillary-force-driven self-assembly of 4D-printed microstructures[J]. Adv Mater, 2021,33(22):e2100332.
|
35 |
Tan A, Madani SY, Rajadas J, et al. Synergistic photothermal ablative effects of functionalizing carbon nanotubes with a POSS-PCU nanocomposite polymer[J]. J Nanobiotechnology, 2012,10:34.
|
36 |
de Mel A, Punshon G, Ramesh B, et al. In situ endothelialisation potential of a biofunctionalised nanocomposite biomaterial-based small diameter bypass graft[J]. Biomed Mater Eng, 2009,19(4-5):317-331.
|
37 |
Maughan E, Lesage F, Butler CR, et al. Airway tissue engineering for congenital laryngotracheal disease[J]. Semin Pediatr Surg, 2016,25(3):186-190.
|
38 |
Maughan EF, Butler CR, Crowley C, et al. A comparison of tracheal scaffold strategies for pediatric transplantation in a rabbit model[J]. Laryngoscope, 2017,127(12):E449-E457.
|
39 |
Schiraldi C, D′Agostino A, Oliva A, et al. Development of hybrid materials based on hydroxyethylmethacrylate as supports for improving cell adhesion and proliferation[J]. Biomaterials, 2004,25(17):3645-3653.
|
40 |
de Mel A, Ramesh B, Scurr DJ, et al. Fumed silica nanoparticle mediated biomimicry for optimal cell-material interactions for artificial organ development[J]. Macromol Biosci, 2014,14(3):307-313.
|
41 |
Mahoney C, Conklin D, Waterman J, et al. Electrospun nanofibers of poly(ε-caprolactone)/depolymerized chitosan for respiratory tissue engineering applications[J]. J Biomater Sci Polym Ed, 2016,27(7):611-625.
|
42 |
Guibert N, Saka H, Dutau H. Airway stenting: technological advancements and its role in interventional pulmonology[J]. Respirology, 2020,25(9):953-962.
|
43 |
Zhao Y, Tian C, Wu K, et al. Vancomycin-loaded polycaprolactone electrospinning nanofibers modulate the airway interfaces to restrain tracheal stenosis[J]. Front Bioeng Biotechnol, 2021,9:760395.
|