1 |
Bouamar R, Shuker N, Hesselink D A, et al. Tacrolimus predose concentrations do not predict the risk of acute rejection after renal transplantation: a pooled analysis from three randomized-controlled clinical trials(dagger)[J]. Am J Transplant, 2013, 13(5): 1253-1261.
|
2 |
Loupy A, Vernerey D, Tinel C, et al. Subclinical rejection phenotypes at 1 year post-transplant and outcome of kidney allografts[J]. J Am Soc Nephrol, 2015, 26(7): 1721-1731.
|
3 |
Parkinson H, Kapushesky M, Shojatalab M, et al. ArrayExpress-a public database of microarray experiments and gene expression profiles[J]. Nucleic Acids Res, 2007, 35(Database issue): D747-D750.
|
4 |
Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets-update[J]. Nucleic Acids Res, 2013, 41(Database issue): D991-D995.
|
5 |
Irizarry RA, Hobbs B, Collin F, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data[J]. Biostatistics, 2003, 4(2): 249-264.
|
6 |
Leek JT, Johnson WE, Parker HS, et al. The sva package for removing batch effects and other unwanted variation in high-throughput experiments[J]. Bioinformatics, 2012, 28(6): 882-883.
|
7 |
Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods[J]. Biostatistics, 2007, 8(1): 118-127.
|
8 |
Ritchie ME, Phipson B, Wu D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Res, 2015, 43(7): e47.
|
9 |
Tibshirani R. Regression shrinkage and selection via the lasso: a retrospective[J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2011, 73(3): 273-282.
|
10 |
Tibshirani R. Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1996, 58(1): 267-288.
|
11 |
Vickers AJ, Cronin AM, Elkin EB, et al. Extensions to decision curve analysis, a novel method for evaluating diagnostic tests, prediction models and molecular markers[J]. BMC Med Inform Decis Mak, 2008, 8: 53.
|
12 |
Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating prediction models[J]. Med Decis Making, 2006, 26(6): 565-574.
|
13 |
Van Loon E, Gazut S, Yazdani S, et al. Development and validation of a peripheral blood mRNA assay for the assessment of antibody-mediated kidney allograft rejection: A multicentre, prospective study[J]. EBioMedicine, 2019, 46: 463-472.
|
14 |
Friedewald JJ, Kurian SM, Heilman RL, et al. Development and clinical validity of a novel blood-based molecular biomarker for subclinical acute rejection following kidney transplant[J]. Am J Transplant, 2019, 19(1): 98-109.
|
15 |
Gunther OP, Shin H, Ng RT, et al. Novel multivariate methods for integration of genomics and proteomics data: applications in a kidney transplant rejection study[J]. Omics, 2014, 18(11): 682-695.
|
16 |
Shen-Orr SS, Tibshirani R, Khatri P, et al. Cell type-specific gene expression differences in complex tissues[J]. Nat Methods, 2010, 7(4): 287-289.
|
17 |
Kurian SM, Williams AN, Gelbart T, et al. Molecular classifiers for acute kidney transplant rejection in peripheral blood by whole genome gene expression profiling[J]. Am J Transplant, 2014, 14(5): 1164-1172.
|
18 |
Li L, Khatri P, Sigdel TK, et al. A peripheral blood diagnostic test for acute rejection in renal transplantation[J]. Am J Transplant, 2012, 12(10): 2710-2718.
|
19 |
Modena BD, Kurian SM, Gaber LW, et al. Gene expression in biopsies of acute rejection and interstitial fibrosis/tubular atrophy reveals highly shared mechanisms that correlate with worse long-term outcomes[J]. Am J Transplant, 2016, 16(7): 1982-1998.
|
20 |
Einecke G, Reeve J, Sis B, et al. A molecular classifier for predicting future graft loss in late kidney transplant biopsies[J]. J Clin Invest, 2010, 120(6): 1862-1872.
|
21 |
Reeve J, Bohmig GA, Eskandary F, et al. Generating automated kidney transplant biopsy reports combining molecular measurements with ensembles of machine learning classifiers[J]. Am J Transplant, 2019, 19(10): 2719-2731.
|
22 |
Kanehisa M, Goto S, Hattori M, et al. From genomics to chemical genomics: new developments in KEGG[J]. Nucleic Acids Research, 2006, 34(suppl_1): D354-D357.
|
23 |
Nishimura D. BioCarta[J]. Biotech Software & Internet Report, 2001, 2(3): 117-120.
|
24 |
Joshi-Tope G, Gillespie M, Vastrik I, et al. Reactome: a knowledgebase of biological pathways[J]. Nucleic Acids Research, 2005, 33(suppl_1): D428-D432.
|
25 |
Stelzer G, Rosen N, Plaschkes I, et al. The GeneCards Suite: From gene data mining to disease genome sequence analyses[J]. Curr Protoc Bioinformatics, 2016, 54: 1.30.1-1.30.33.
|
26 |
Roufosse C, Simmonds N, Clahsen-Van Groningen M, et al. A 2018 reference guide to the Banff classification of renal allograft pathology[J]. Transplantation, 2018, 102(11): 1795-1814.
|
27 |
Becker JU, Chang A, Nickeleit V, et al. Banff borderline changes suspicious for acute T cell-mediated rejection: Where do we stand?[J]. Am J Transplant, 2016, 16(9): 2654-2660.
|
28 |
First MR, Peddi VR, Mannon R, et al. Investigator assessment of the utility of the TruGraf molecular diagnostic test in clinical practice[J]. Transplant Proc, 2019, 51(3): 729-733.
|
29 |
Marsh L, Kurian SM, Rice JC, et al. Application of TruGraf v1: A novel molecular biomarker for managing kidney transplant recipients with stable renal function[J]. Transplant Proc, 2019, 51(3): 722-728.
|