切换至 "中华医学电子期刊资源库"

中华移植杂志(电子版) ›› 2020, Vol. 14 ›› Issue (04) : 210 -215. doi: 10.3877/cma.j.issn.1674-3903.2020.04.003

所属专题: 文献

论著

血浆外泌体miR-210、miR-21和miR-4639对肾移植术后并发慢性移植肾肾病的诊断价值
陈依梦1, 王振国1, 何小舟1, 薛冬1,()   
  1. 1. 213004 常州,苏州大学附属第三医院泌尿外科
  • 收稿日期:2019-11-10 出版日期:2020-08-25
  • 通信作者: 薛冬
  • 基金资助:
    江苏省"333工程"培养资金资助项目(BRA2017116); 常州市应用基础研究计划(CJ20200089)

Diagnostic value of plasma exosomal miR-210, miR-21 and miR-4639 on chronic allograft nephropathy in renal transplantation recipients

Yimeng Chen1, Zhenguo Wang1, Xiaozhou He1, Dong Xue1,()   

  1. 1. Department of Urology, the Third Affiliated Hospital of Soochow University, Changzhou 213004, China
  • Received:2019-11-10 Published:2020-08-25
  • Corresponding author: Dong Xue
  • About author:
    Corresponding author: Xue Dong, Email:
引用本文:

陈依梦, 王振国, 何小舟, 薛冬. 血浆外泌体miR-210、miR-21和miR-4639对肾移植术后并发慢性移植肾肾病的诊断价值[J/OL]. 中华移植杂志(电子版), 2020, 14(04): 210-215.

Yimeng Chen, Zhenguo Wang, Xiaozhou He, Dong Xue. Diagnostic value of plasma exosomal miR-210, miR-21 and miR-4639 on chronic allograft nephropathy in renal transplantation recipients[J/OL]. Chinese Journal of Transplantation(Electronic Edition), 2020, 14(04): 210-215.

目的

检测肾移植受者术后血浆外泌体miR-21、miR-210和miR-4639表达变化,分析外泌体miR-21、miR-210和miR-4639单独及联合对肾移植术后并发慢性移植肾肾病(CAN)的诊断价值。

方法

回顾性分析2018年1月至2019年1月苏州大学附属第三医院泌尿外科实施的同种异体肾移植受者临床资料,最终纳入34例受者,根据肾移植术后是否发生CAN将其分为CAN组及对照组。采用凝胶排阻色谱法提取血浆外泌体,采用Nanosight NS300分析外泌体粒径,采用蛋白质印迹法(WB)分析外泌体表面标志物(CD63和Alix)表达情况。采用卡方检验比较CAN组和对照组受者性别比例。采用成组t检验比较两组受者移植前年龄、末次血清肌酐、血清尿素氮和估算肾小球滤过率(eGFR)。采用受试者工作特征(ROC)曲线评价血浆外泌体miR-210、miR-21和miR-4639对肾移植术后并发CAN的诊断效能。P<0.05为差异有统计学意义。

结果

CAN组(n=18例)和对照组(n=16例)受者性别以及移植前年龄、末次血清肌酐、血清尿素氮和eGFR差异均无统计学意义(χ2=0.04、t=0.86、-1.84、-1.83和0.85,P均>0.05)。透射电镜、Nanosight NS300及WB检测结果均提示提取样本为血浆外泌体。CAN组与对照组血浆外泌体miR-210、miR-21和miR-4639相对表达量差异均有统计学意义(t=4.13、3.38和2.33,P均<0.05)。miR-210预测肾移植术后并发CAN的ROC曲线下面积为0.854(95%CI:0.730~0.979,P<0.05),当截断值=1.320时,敏感度为66.7%,特异度为93.8%。miR-21预测肾移植术后并发CAN的ROC曲线下面积为0.774(95%CI:0.618~0.931,P<0.05),当截断值=1.243时,敏感度为55.6%,特异度为93.8%。miR-4639预测肾移植术后并发CAN的ROC曲线下面积为0.670(95%CI:0.482~0.859,P<0.05),当截断值=0.936,敏感度为66.7%,特异度为75.0%。随后,构建基于miR-210、miR-21和miR-4639 3个指标的联合诊断模型,回归方程z=5.293×[miR-210]+5.046×[miR-21]+0.433×[miR-4639]-13.373,联合预测概率值pez/(1+ez)。miR-210、miR-21和miR-4639联合预测肾移植术后并发CAN的ROC曲线下面积为0.938(95%CI:0.860~1.015,P<0.05),当截断值=0.587,敏感度为83.33%,特异度为93.75%。当联合预测值为0.587时,CAN组有83.3%(15/18)的个体被联合预测模型诊断出阳性结果,而对照组有93.8%(15/16)的个体被联合预测模型诊断出阴性结果,表明该联合预测模型有较好的诊断价值。

结论

miR-210、miR-21和miR-4639组成的miRNA阵列可能可以用于早期诊断肾移植术后并发CAN。

Objective

To detect the changes in the expression of plasma exosomal miR-21, miR-210 and miR-4639 in renal transplant recipients, and to analyze the diagnostic value of miR-21, miR-210 and miR-4639, and combined use of them for chronic allograft nephropathy (CAN).

Methods

The clinical data of kidney transplant recipients in the Department of Urology, the Third Affiliated Hospital of Soochow University from January 2018 to January 2019 were retrospectively analyzed. Thirty-four kidney transplant recipients were enrolled and divided into CAN group and control group. Plasma exosomes were isolated by gel exclusion chromatography, and the particle size analysis of exosomes was detected by Nanoparticle NS300. Expression of exosome surface markers (CD63 and Alix) were analyzed by western blotting (WB). The chi-square test was used to compare the gender ratio of the CAN group and the control group. Age, serum creatinine, urea nitrogen and estimated glomerular filtration rate (eGFR) (last time before transplantation) of the 2 groups of recipients were compared by group t test. The receiver operating characteristic (ROC) curve was used to evaluate the diagnostic efficacy of plasma exosomal miR-210, miR-21 and miR-4639 for CAN after renal transplantation. P<0.05 was considered statistically significant.

Results

There was no statistically significant differences in gender, age, serum creatinine, urea nitrogen and eGFR before transplantation between the CAN group (n=18) and the control group (n=16) (χ2=0.04, t=0.86, -1.84, -1.83 and 0.85, P all >0.05). Transmission electron microscopy, Nanosight NS300 and WB analysis indicated that the extracted samples were plasma exosomes. The relative expressions of miR-210, miR-21 and miR-4639 between the 2 groups had statistical significance (t=4.13, 3.38 and 2.33, P all<0.05). The area under the ROC curve (AUC) for the prediction of CAN by miR-210 was 0.854(95%CI: 0.730-0.979, P<0.05). When the cut-off value was 1.320, the sensitivity was 66.7%, and the specificity was 93.8%. The AUC for the prediction of CAN by miR-21 was 0.774(95%CI: 0.618-0.931, P<0.05). When the cut-off value was 1.243, the sensitivity was 55.6%, and the specificity was 93.8%. The AUC for the prediction of CAN by miR-4639 was 0.670(95%CI: 0.482-0.859, P<0.05). When the cut-off value was 0.936, the sensitivity was 66.7%, and the specificity was 75.0%. A joint diagnostic model based on 3 indicators was constructed, and the regression equation was z=5.293×[miR-210]+ 5.046×[miR-21]+ 0.433×[miR-4639] -13.373. The joint prediction value p=ez/(1+ ez). The AUC of combined miRNAs to predict the complications of CAN after renal transplantation was 0.938 (95%CI: 0.860-1.015, P<0.05). When the cut-off value was 0.587, the sensitivity was 83.3% and specificity was 93.8%. Moreover, 83.3% (15/18) of the individuals in the CAN group were diagnosed as positive by the joint prediction model, while 93.8% (15/16) of the individuals in the control group were diagnosed as negative by the joint prediction model when the cutoff value 0.587 was applied. The results indicate that the joint prediction model has good diagnostic value.

Conclusions

Joint diagnostic model of plasma exosomal miR-210, miR-21 and miR-4639 may become a biomarker for early noninvasive diagnosis of CAN after renal transplantation.

表1 miR-210、miR-21和miR-4639定量扩增引物
图1 肾移植受者术后3个月后首次随访复查血样血浆外泌体分离后鉴定结果
图2 肾移植术后3个月后首次随访复查CAN组和对照组血浆外泌体miR-210、miR-21和miR-463相对表达量比较
图3 miR-210、miR-21和miR-4639单独及联合预测肾移植术后并发慢性移植肾肾病的受试者工作特征曲线
1
Chinen J, Buckley RH. Transplantation immunology: solid organ and bone marrow[J]. J Allergy Clin Immunol, 2010, 125(Suppl 2): S324-S335.
2
Schauerte C, Hubner A, Rong S, et al. Antagonism of profibrotic microRNA-21 improves outcome of murine chronic renal allograft dysfunction[J]. Kidney Int, 2017, 92(3): 646-656.
3
Solez K, Colvin RB, Racusen LC, et al. Banff ′05 Meeting Report: differential diagnosis of chronic allograft injury and elimination of chronic allograft nephropathy ('CAN')[J]. Am J Transplant, 2007, 7(3): 518-526.
4
Cassidy H, Slyne J, O′Kelly P, et al. Urinary biomarkers of chronic allograft nephropathy[J]. Proteomics Clin Appl, 2015, 9(5-6): 574-585.
5
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478): eaau6977.
6
Jing H, Tang S, Lin S, et al. The role of extracellular vesicles in renal fibrosis[J]. Cell Death Dis, 2019, 10(5): 367.
7
He X, Yang Y, Zhi F, et al. δ-Opioid receptor activation modified microRNA expression in the rat kidney under prolonged hypoxia[J]. PLoS One, 2013, 8(4): e61080.
8
Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate[J]. Ann Intern Med, 2009, 150(9): 604-612.
9
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods, 2001, 25(4): 402-408.
10
Zununi Vahed S, Ardalan M, Samadi N, et al. Pharmacogenetics and drug-induced nephrotoxicity in renal transplant recipients[J]. Bioimpacts, 2015, 5(1): 45-54.
11
Zununi Vahed S, Poursadegh Zonouzi A, Mahmoodpoor F, et al. Circulating miR-150, miR-192, miR-200b, and miR-423-3p as non-invasive biomarkers of chronic allograft dysfunction[J]. Arch Med Res, 2017, 48(1): 96-104.
12
Seron D. Early diagnosis of chronic allograft nephropathy by means of protocol biopsies[J]. Transplant Proc, 2004, 36(3): 763-764.
13
Shishido S, Asanuma H, Nakai H, et al. The impact of repeated subclinical acute rejection on the progression of chronic allograft nephropathy[J]. J Am Soc Nephrol, 2003, 14(4): 1046-1052.
14
Johnston O, Cassidy H, O′Connell S, et al. Identification of beta2-microglobulin as a urinary biomarker for chronic allograft nephropathy using proteomic methods[J]. Proteomics Clin Appl, 2011, 5(7-8): 422-431.
15
Paul LC. Chronic allograft nephropathy: an update[J]. Kidney Int, 1999, 56(3): 783-793.
16
Nankivell BJ, Borrows RJ, Fung CL, et al. The natural history of chronic allograft nephropathy[J]. N Engl J Med, 2003, 349(24): 2326-2333.
17
Valadi H, Ekstrom K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells[J]. Nat Cell Biol, 2007, 9(6): 654-659.
18
Lin SY, Chang CH, Wu HC, et al. Proteome profiling of urinary exosomes identifies alpha 1-antitrypsin and H2B1K as diagnostic and prognostic biomarkers for urothelial carcinoma[J]. Sci Rep, 2016, 6: 34446.
19
Scian MJ, Maluf DG, David KG, et al. MicroRNA profiles in allograft tissues and paired urines associate with chronic allograft dysfunction with IF/TA[J]. Am J Transplant, 2011, 11(10): 2110-2122.
20
Maluf DG, Dumur CI, Suh JL, et al. The urine microRNA profile may help monitor post-transplant renal graft function[J]. Kidney Int, 2014, 85(2): 439-449.
21
Saejong S, Townamchai N, Somparn P, et al. MicroRNA-21 in plasma exosome, but not from whole plasma, as a biomarker for the severe interstitial fibrosis and tubular atrophy (IF/TA) in post-renal transplantation[J]. Asian Pac J Allergy Immunol, 2020. [Online ahead of print]
22
Pan T, Jia P, Chen N, et al. Delayed remote ischemic preconditioning confersrenoprotection against septic acute kidney injury via exosomal miR-21[J]. Theranostics, 2019, 9(2): 405.
23
Lange T, Artelt N, Kindt F, et al. MiR-21 is up-regulated in urinary exosomes of chronic kidney disease patients and after glomerular injury[J]. J Cell Mol Med, 2019, 23(7): 4839-4843.
24
Lv CY, Ding WJ, Wang YL, et al. A PEG-based method for the isolation of urinary exosomes and its application in renal fibrosis diagnostics using cargo miR-29c and miR-21 analysis[J]. Int Urol Nephrol, 2018, 50(5): 973-982.
25
Zang J, Maxwell AP, Simpson DA, et al. Differential expression of urinary exosomal MicroRNAs miR-21-5p and miR-30b-5p in individuals with diabetic kidney disease[J]. Sci Rep, 2019, 9(1): 10900.
26
Wang X, Wang T, Chen C, et al. Serum exosomal miR-210 as a potential biomarker for clear cell renal cell carcinoma[J]. J Cell Biochem, 2019, 120(2): 1492-1502.
27
Chen Y, Gao C, Sun Q, et al. MicroRNA-4639 is a regulator of DJ-1 expression and a potential early diagnostic marker for Parkinson′s disease[J]. Front Aging Neurosci, 2017, 9: 232.
28
Van Balkom BW, Pisitkun T, Verhaar MC, et al. Exosomes and the kidney: prospects for diagnosis and therapy of renal diseases[J]. Kidney Int, 2011, 80(11): 1138-1145.
29
Pisitkun T, Shen R-F, Knepper MA. Identification and proteomic profiling of exosomes in human urine[J]. Proc Natl Acad Sci U S A, 2004, 101(36): 13368-13373.
30
Cheng L, Sun X, Scicluna BJ, et al. Characterization and deep sequencing analysis of exosomal and non-exosomal miRNA in human urine[J]. Kidney Int, 2014, 86(2): 433-444.
31
Williams Z, Ben-Dov IZ, Elias R, et al. Comprehensive profiling of circulating microRNA via small RNA sequencing of cDNA libraries reveals biomarker potential and limitations[J]. Proc Natl Acad Sci U S A, 2013, 110(11): 4255-4260.
32
Yang Q, Lu J, Wang S, et al. Application of next-generation sequencing technology to profile the circulating microRNAs in the serum of preeclampsia versus normal pregnant women[J]. Clinica Chimica Acta, 2011, 412(23-24): 2167-2173.
33
Naskalski J, Celiński A. Determining of actual activities of acid and alkaline ribonuclease in human serum and urine[J]. Mater Med Pol, 1991,23(2): 107-110.
[1] 刘政宏, 袁春銮. 乳腺癌患者血清外泌体中长链非编码RNA BC200的表达及临床意义[J/OL]. 中华乳腺病杂志(电子版), 2024, 18(04): 212-216.
[2] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[3] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[4] 白香妮, 孙巨军, 谢鹤, 李宏斌. 急性胰腺炎患者血清微小RNA-142-3p和磷脂酰肌醇3-激酶水平变化及对并发腹腔感染风险预测[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(04): 222-228.
[5] 中华医学会器官移植学分会. 遗体捐献肾脏获取手术技术操作指南[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 257-265.
[6] 邹永康, 石雍, 徐贤刚, 张帅民, 刘衍, 杨生鹏, 叶啟发, 陈根, 张毅. 肾移植术后手术切口米根霉感染伴菌血症一例并文献复习[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 289-292.
[7] 吕玥彤, 靳梦圆, 周大为, 叶啟发. 机器人辅助下肾移植的临床进展与争议[J/OL]. 中华移植杂志(电子版), 2024, 18(04): 242-246.
[8] 尚丽红, 王志华, 张文艳, 朱琳茹, 周华. 内皮粘蛋白抗体与肾移植术后抗体介导排斥反应和移植肾预后的研究[J/OL]. 中华移植杂志(电子版), 2024, 18(03): 165-170.
[9] 吕军好, 林锦雯, 张心怡, 陈江华. 细胞外囊泡在肾移植诊断和治疗中的研究进展[J/OL]. 中华移植杂志(电子版), 2024, 18(03): 186-192.
[10] 蔡定钦, 孙建国, 陈旭. 外泌体非编码RNAs与肺癌放射治疗的研究进展[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(04): 655-658.
[11] 陈俊秋, 邬绿莹, 马予洁, 林娜, 刘飞, 陈津. 基于lncRNA微阵列芯片技术探索间充质干细胞外泌体增强小鼠胰岛β细胞抗低氧损伤的潜在机制[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 129-136.
[12] 孙海燕, 周士燕, 张杉杉, 张研, 张茜. 间充质干细胞及其外泌体在高原肺水肿中的潜在治疗机制研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 186-190.
[13] 袁雨涵, 杨盛力. 体液和组织蛋白质组学分析在肝癌早期分子诊断中的研究进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 883-888.
[14] 季鹏程, 鄂一民, 陆晨, 喻春钊. 循环外泌体相关生物标志物在结直肠癌诊断中的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(04): 265-273.
[15] 王国强, 张纲, 唐建坡, 张玉国, 杨永江. LINC00839 调节miR-17-5p/WEE1 轴对结直肠癌细胞增殖、凋亡和迁移的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(06): 491-499.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?