切换至 "中华医学电子期刊资源库"

中华移植杂志(电子版) ›› 2020, Vol. 14 ›› Issue (04) : 210 -215. doi: 10.3877/cma.j.issn.1674-3903.2020.04.003

所属专题: 文献

论著

血浆外泌体miR-210、miR-21和miR-4639对肾移植术后并发慢性移植肾肾病的诊断价值
陈依梦1, 王振国1, 何小舟1, 薛冬1,()   
  1. 1. 213004 常州,苏州大学附属第三医院泌尿外科
  • 收稿日期:2019-11-10 出版日期:2020-08-25
  • 通信作者: 薛冬
  • 基金资助:
    江苏省"333工程"培养资金资助项目(BRA2017116); 常州市应用基础研究计划(CJ20200089)

Diagnostic value of plasma exosomal miR-210, miR-21 and miR-4639 on chronic allograft nephropathy in renal transplantation recipients

Yimeng Chen1, Zhenguo Wang1, Xiaozhou He1, Dong Xue1,()   

  1. 1. Department of Urology, the Third Affiliated Hospital of Soochow University, Changzhou 213004, China
  • Received:2019-11-10 Published:2020-08-25
  • Corresponding author: Dong Xue
  • About author:
    Corresponding author: Xue Dong, Email:
引用本文:

陈依梦, 王振国, 何小舟, 薛冬. 血浆外泌体miR-210、miR-21和miR-4639对肾移植术后并发慢性移植肾肾病的诊断价值[J]. 中华移植杂志(电子版), 2020, 14(04): 210-215.

Yimeng Chen, Zhenguo Wang, Xiaozhou He, Dong Xue. Diagnostic value of plasma exosomal miR-210, miR-21 and miR-4639 on chronic allograft nephropathy in renal transplantation recipients[J]. Chinese Journal of Transplantation(Electronic Edition), 2020, 14(04): 210-215.

目的

检测肾移植受者术后血浆外泌体miR-21、miR-210和miR-4639表达变化,分析外泌体miR-21、miR-210和miR-4639单独及联合对肾移植术后并发慢性移植肾肾病(CAN)的诊断价值。

方法

回顾性分析2018年1月至2019年1月苏州大学附属第三医院泌尿外科实施的同种异体肾移植受者临床资料,最终纳入34例受者,根据肾移植术后是否发生CAN将其分为CAN组及对照组。采用凝胶排阻色谱法提取血浆外泌体,采用Nanosight NS300分析外泌体粒径,采用蛋白质印迹法(WB)分析外泌体表面标志物(CD63和Alix)表达情况。采用卡方检验比较CAN组和对照组受者性别比例。采用成组t检验比较两组受者移植前年龄、末次血清肌酐、血清尿素氮和估算肾小球滤过率(eGFR)。采用受试者工作特征(ROC)曲线评价血浆外泌体miR-210、miR-21和miR-4639对肾移植术后并发CAN的诊断效能。P<0.05为差异有统计学意义。

结果

CAN组(n=18例)和对照组(n=16例)受者性别以及移植前年龄、末次血清肌酐、血清尿素氮和eGFR差异均无统计学意义(χ2=0.04、t=0.86、-1.84、-1.83和0.85,P均>0.05)。透射电镜、Nanosight NS300及WB检测结果均提示提取样本为血浆外泌体。CAN组与对照组血浆外泌体miR-210、miR-21和miR-4639相对表达量差异均有统计学意义(t=4.13、3.38和2.33,P均<0.05)。miR-210预测肾移植术后并发CAN的ROC曲线下面积为0.854(95%CI:0.730~0.979,P<0.05),当截断值=1.320时,敏感度为66.7%,特异度为93.8%。miR-21预测肾移植术后并发CAN的ROC曲线下面积为0.774(95%CI:0.618~0.931,P<0.05),当截断值=1.243时,敏感度为55.6%,特异度为93.8%。miR-4639预测肾移植术后并发CAN的ROC曲线下面积为0.670(95%CI:0.482~0.859,P<0.05),当截断值=0.936,敏感度为66.7%,特异度为75.0%。随后,构建基于miR-210、miR-21和miR-4639 3个指标的联合诊断模型,回归方程z=5.293×[miR-210]+5.046×[miR-21]+0.433×[miR-4639]-13.373,联合预测概率值pez/(1+ez)。miR-210、miR-21和miR-4639联合预测肾移植术后并发CAN的ROC曲线下面积为0.938(95%CI:0.860~1.015,P<0.05),当截断值=0.587,敏感度为83.33%,特异度为93.75%。当联合预测值为0.587时,CAN组有83.3%(15/18)的个体被联合预测模型诊断出阳性结果,而对照组有93.8%(15/16)的个体被联合预测模型诊断出阴性结果,表明该联合预测模型有较好的诊断价值。

结论

miR-210、miR-21和miR-4639组成的miRNA阵列可能可以用于早期诊断肾移植术后并发CAN。

Objective

To detect the changes in the expression of plasma exosomal miR-21, miR-210 and miR-4639 in renal transplant recipients, and to analyze the diagnostic value of miR-21, miR-210 and miR-4639, and combined use of them for chronic allograft nephropathy (CAN).

Methods

The clinical data of kidney transplant recipients in the Department of Urology, the Third Affiliated Hospital of Soochow University from January 2018 to January 2019 were retrospectively analyzed. Thirty-four kidney transplant recipients were enrolled and divided into CAN group and control group. Plasma exosomes were isolated by gel exclusion chromatography, and the particle size analysis of exosomes was detected by Nanoparticle NS300. Expression of exosome surface markers (CD63 and Alix) were analyzed by western blotting (WB). The chi-square test was used to compare the gender ratio of the CAN group and the control group. Age, serum creatinine, urea nitrogen and estimated glomerular filtration rate (eGFR) (last time before transplantation) of the 2 groups of recipients were compared by group t test. The receiver operating characteristic (ROC) curve was used to evaluate the diagnostic efficacy of plasma exosomal miR-210, miR-21 and miR-4639 for CAN after renal transplantation. P<0.05 was considered statistically significant.

Results

There was no statistically significant differences in gender, age, serum creatinine, urea nitrogen and eGFR before transplantation between the CAN group (n=18) and the control group (n=16) (χ2=0.04, t=0.86, -1.84, -1.83 and 0.85, P all >0.05). Transmission electron microscopy, Nanosight NS300 and WB analysis indicated that the extracted samples were plasma exosomes. The relative expressions of miR-210, miR-21 and miR-4639 between the 2 groups had statistical significance (t=4.13, 3.38 and 2.33, P all<0.05). The area under the ROC curve (AUC) for the prediction of CAN by miR-210 was 0.854(95%CI: 0.730-0.979, P<0.05). When the cut-off value was 1.320, the sensitivity was 66.7%, and the specificity was 93.8%. The AUC for the prediction of CAN by miR-21 was 0.774(95%CI: 0.618-0.931, P<0.05). When the cut-off value was 1.243, the sensitivity was 55.6%, and the specificity was 93.8%. The AUC for the prediction of CAN by miR-4639 was 0.670(95%CI: 0.482-0.859, P<0.05). When the cut-off value was 0.936, the sensitivity was 66.7%, and the specificity was 75.0%. A joint diagnostic model based on 3 indicators was constructed, and the regression equation was z=5.293×[miR-210]+ 5.046×[miR-21]+ 0.433×[miR-4639] -13.373. The joint prediction value p=ez/(1+ ez). The AUC of combined miRNAs to predict the complications of CAN after renal transplantation was 0.938 (95%CI: 0.860-1.015, P<0.05). When the cut-off value was 0.587, the sensitivity was 83.3% and specificity was 93.8%. Moreover, 83.3% (15/18) of the individuals in the CAN group were diagnosed as positive by the joint prediction model, while 93.8% (15/16) of the individuals in the control group were diagnosed as negative by the joint prediction model when the cutoff value 0.587 was applied. The results indicate that the joint prediction model has good diagnostic value.

Conclusions

Joint diagnostic model of plasma exosomal miR-210, miR-21 and miR-4639 may become a biomarker for early noninvasive diagnosis of CAN after renal transplantation.

表1 miR-210、miR-21和miR-4639定量扩增引物
图1 肾移植受者术后3个月后首次随访复查血样血浆外泌体分离后鉴定结果
图2 肾移植术后3个月后首次随访复查CAN组和对照组血浆外泌体miR-210、miR-21和miR-463相对表达量比较
图3 miR-210、miR-21和miR-4639单独及联合预测肾移植术后并发慢性移植肾肾病的受试者工作特征曲线
1
Chinen J, Buckley RH. Transplantation immunology: solid organ and bone marrow[J]. J Allergy Clin Immunol, 2010, 125(Suppl 2): S324-S335.
2
Schauerte C, Hubner A, Rong S, et al. Antagonism of profibrotic microRNA-21 improves outcome of murine chronic renal allograft dysfunction[J]. Kidney Int, 2017, 92(3): 646-656.
3
Solez K, Colvin RB, Racusen LC, et al. Banff ′05 Meeting Report: differential diagnosis of chronic allograft injury and elimination of chronic allograft nephropathy ('CAN')[J]. Am J Transplant, 2007, 7(3): 518-526.
4
Cassidy H, Slyne J, O′Kelly P, et al. Urinary biomarkers of chronic allograft nephropathy[J]. Proteomics Clin Appl, 2015, 9(5-6): 574-585.
5
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478): eaau6977.
6
Jing H, Tang S, Lin S, et al. The role of extracellular vesicles in renal fibrosis[J]. Cell Death Dis, 2019, 10(5): 367.
7
He X, Yang Y, Zhi F, et al. δ-Opioid receptor activation modified microRNA expression in the rat kidney under prolonged hypoxia[J]. PLoS One, 2013, 8(4): e61080.
8
Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate[J]. Ann Intern Med, 2009, 150(9): 604-612.
9
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods, 2001, 25(4): 402-408.
10
Zununi Vahed S, Ardalan M, Samadi N, et al. Pharmacogenetics and drug-induced nephrotoxicity in renal transplant recipients[J]. Bioimpacts, 2015, 5(1): 45-54.
11
Zununi Vahed S, Poursadegh Zonouzi A, Mahmoodpoor F, et al. Circulating miR-150, miR-192, miR-200b, and miR-423-3p as non-invasive biomarkers of chronic allograft dysfunction[J]. Arch Med Res, 2017, 48(1): 96-104.
12
Seron D. Early diagnosis of chronic allograft nephropathy by means of protocol biopsies[J]. Transplant Proc, 2004, 36(3): 763-764.
13
Shishido S, Asanuma H, Nakai H, et al. The impact of repeated subclinical acute rejection on the progression of chronic allograft nephropathy[J]. J Am Soc Nephrol, 2003, 14(4): 1046-1052.
14
Johnston O, Cassidy H, O′Connell S, et al. Identification of beta2-microglobulin as a urinary biomarker for chronic allograft nephropathy using proteomic methods[J]. Proteomics Clin Appl, 2011, 5(7-8): 422-431.
15
Paul LC. Chronic allograft nephropathy: an update[J]. Kidney Int, 1999, 56(3): 783-793.
16
Nankivell BJ, Borrows RJ, Fung CL, et al. The natural history of chronic allograft nephropathy[J]. N Engl J Med, 2003, 349(24): 2326-2333.
17
Valadi H, Ekstrom K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells[J]. Nat Cell Biol, 2007, 9(6): 654-659.
18
Lin SY, Chang CH, Wu HC, et al. Proteome profiling of urinary exosomes identifies alpha 1-antitrypsin and H2B1K as diagnostic and prognostic biomarkers for urothelial carcinoma[J]. Sci Rep, 2016, 6: 34446.
19
Scian MJ, Maluf DG, David KG, et al. MicroRNA profiles in allograft tissues and paired urines associate with chronic allograft dysfunction with IF/TA[J]. Am J Transplant, 2011, 11(10): 2110-2122.
20
Maluf DG, Dumur CI, Suh JL, et al. The urine microRNA profile may help monitor post-transplant renal graft function[J]. Kidney Int, 2014, 85(2): 439-449.
21
Saejong S, Townamchai N, Somparn P, et al. MicroRNA-21 in plasma exosome, but not from whole plasma, as a biomarker for the severe interstitial fibrosis and tubular atrophy (IF/TA) in post-renal transplantation[J]. Asian Pac J Allergy Immunol, 2020. [Online ahead of print]
22
Pan T, Jia P, Chen N, et al. Delayed remote ischemic preconditioning confersrenoprotection against septic acute kidney injury via exosomal miR-21[J]. Theranostics, 2019, 9(2): 405.
23
Lange T, Artelt N, Kindt F, et al. MiR-21 is up-regulated in urinary exosomes of chronic kidney disease patients and after glomerular injury[J]. J Cell Mol Med, 2019, 23(7): 4839-4843.
24
Lv CY, Ding WJ, Wang YL, et al. A PEG-based method for the isolation of urinary exosomes and its application in renal fibrosis diagnostics using cargo miR-29c and miR-21 analysis[J]. Int Urol Nephrol, 2018, 50(5): 973-982.
25
Zang J, Maxwell AP, Simpson DA, et al. Differential expression of urinary exosomal MicroRNAs miR-21-5p and miR-30b-5p in individuals with diabetic kidney disease[J]. Sci Rep, 2019, 9(1): 10900.
26
Wang X, Wang T, Chen C, et al. Serum exosomal miR-210 as a potential biomarker for clear cell renal cell carcinoma[J]. J Cell Biochem, 2019, 120(2): 1492-1502.
27
Chen Y, Gao C, Sun Q, et al. MicroRNA-4639 is a regulator of DJ-1 expression and a potential early diagnostic marker for Parkinson′s disease[J]. Front Aging Neurosci, 2017, 9: 232.
28
Van Balkom BW, Pisitkun T, Verhaar MC, et al. Exosomes and the kidney: prospects for diagnosis and therapy of renal diseases[J]. Kidney Int, 2011, 80(11): 1138-1145.
29
Pisitkun T, Shen R-F, Knepper MA. Identification and proteomic profiling of exosomes in human urine[J]. Proc Natl Acad Sci U S A, 2004, 101(36): 13368-13373.
30
Cheng L, Sun X, Scicluna BJ, et al. Characterization and deep sequencing analysis of exosomal and non-exosomal miRNA in human urine[J]. Kidney Int, 2014, 86(2): 433-444.
31
Williams Z, Ben-Dov IZ, Elias R, et al. Comprehensive profiling of circulating microRNA via small RNA sequencing of cDNA libraries reveals biomarker potential and limitations[J]. Proc Natl Acad Sci U S A, 2013, 110(11): 4255-4260.
32
Yang Q, Lu J, Wang S, et al. Application of next-generation sequencing technology to profile the circulating microRNAs in the serum of preeclampsia versus normal pregnant women[J]. Clinica Chimica Acta, 2011, 412(23-24): 2167-2173.
33
Naskalski J, Celiński A. Determining of actual activities of acid and alkaline ribonuclease in human serum and urine[J]. Mater Med Pol, 1991,23(2): 107-110.
[1] 张中斌, 付琨朋, 朱凯, 张玉, 李华. 胫骨高位截骨术与富血小板血浆治疗膝骨关节炎的疗效[J]. 中华关节外科杂志(电子版), 2023, 17(05): 633-641.
[2] 王岩, 马剑雄, 郎爽, 董本超, 田爱现, 李岩, 孙磊, 靳洪震, 卢斌, 王颖, 柏豪豪, 马信龙. 外泌体在骨质疏松症诊疗中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 673-678.
[3] 贺敬龙, 孙炜, 高明宏, 谢伟, 姜骆永, 何琦非, 岳家吉. 外泌体非编码RNA在骨关节炎发病机制中的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(04): 520-527.
[4] 罗晨, 宗开灿, 李世颖, 傅应亚. 微小RNA-199a-3p调控CD4T细胞表达参与肺炎支原体肺炎患儿免疫反应研究[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 569-574.
[5] 代雯荣, 赵丽娟, 李智慧. 细胞外囊泡对胚胎着床影响的研究进展[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 616-620.
[6] 彭文翰. 肾移植受者早期霉酚酸强化剂量长期有效性和安全性的研究[J]. 中华移植杂志(电子版), 2023, 17(05): 0-.
[7] 中华医学会器官移植学分会, 中国医师协会器官移植医师分会, 上海医药行业协会. 中国肝、肾移植受者霉酚酸类药物应用专家共识(2023版)[J]. 中华移植杂志(电子版), 2023, 17(05): 257-272.
[8] 彭雨诗, 苗芸, 严紫嫣. 宏基因组高通量测序诊断肾移植术后华支睾吸虫感染一例[J]. 中华移植杂志(电子版), 2023, 17(05): 297-299.
[9] 戚若晨, 马帅军, 韩士超, 王国辉, 刘克普, 张小燕, 杨晓剑, 秦卫军. 肾移植术后新型冠状病毒感染单中心诊疗经验[J]. 中华移植杂志(电子版), 2023, 17(04): 232-239.
[10] 胡皓翀, 刘一霆, 郭嘉瑜, 邹寄林, 陈忠宝, 周江桥, 邱涛. 肾移植术后耐碳青霉烯类肺炎克雷伯菌感染的诊疗分析[J]. 中华移植杂志(电子版), 2023, 17(04): 246-249.
[11] 朱伟芳, 陈琳, 乔建军. 激光联合光动力疗法治疗肾移植后鲍恩样丘疹病一例[J]. 中华移植杂志(电子版), 2023, 17(04): 250-252.
[12] 吴建永. 单中心2 000例心脏死亡器官捐献肾移植发展与创新[J]. 中华移植杂志(电子版), 2023, 17(04): 0-.
[13] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[14] 袁媛, 赵良平, 刘智慧, 张丽萍, 谭丽梅, 閤梦琴. 子宫内膜癌组织中miR-25-3p、PTEN的表达及与病理参数的关系[J]. 中华临床医师杂志(电子版), 2023, 17(9): 1016-1020.
[15] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
阅读次数
全文


摘要