切换至 "中华医学电子期刊资源库"

中华移植杂志(电子版) ›› 2021, Vol. 15 ›› Issue (06) : 375 -382. doi: 10.3877/cma.j.issn.1674-3903.2021.06.010

综述

猪-人异种心脏移植展望
杨锦然1, 李新长1, 傅俊1, 杨华1, 张友福1, 龙成美1,()   
  1. 1. 330006 南昌,江西省人民医院器官移植科
  • 收稿日期:2021-09-22 出版日期:2021-12-25
  • 通信作者: 龙成美

Prospect of pig-to-human cardiac xenotransplantation

Jinran Yang1, Xinchang Li1, Jun Fu1, Hua Yang1, Youfu Zhang1, Chengmei Long1,()   

  1. 1. Department of Organ Transplantation, Jiangxi Provincial People′s Hospital, Nanchang 330006, China
  • Received:2021-09-22 Published:2021-12-25
  • Corresponding author: Chengmei Long
引用本文:

杨锦然, 李新长, 傅俊, 杨华, 张友福, 龙成美. 猪-人异种心脏移植展望[J]. 中华移植杂志(电子版), 2021, 15(06): 375-382.

Jinran Yang, Xinchang Li, Jun Fu, Hua Yang, Youfu Zhang, Chengmei Long. Prospect of pig-to-human cardiac xenotransplantation[J]. Chinese Journal of Transplantation(Electronic Edition), 2021, 15(06): 375-382.

心力衰竭患者呈逐年增加趋势,心脏移植是治疗此类患者的有效手段,但供心短缺严重制约心脏移植的发展。异种心脏移植(CXTx)可扩大供器官来源,可在很大程度上缓解供器官短缺的问题。猪-人CXTx一直是人类探索的重要方向。本文针对CXTx的发展历程及特殊问题进行综述,从CXTx模型建立、现状、存在难题、供体猪基因改造、异种移植免疫、凝血功能改变、免疫抑制剂应用、异种移植潜在感染风险及如何甄选首例猪-人CXTx受者等相关问题出发,提出猪-人CXTx进入临床试验的展望,为更好地进行猪-人CXTx提供理论参考。

Heart failure patients are increasing year by year, and heart transplantation is an effective treatment for heart failure patients, but the shortage of donors is the main problem of heart transplantation. Cardiac xenotransplantation (CXTx) can expand the source of donated organs and alleviate the contradiction of organ shortage to a great extent. Pig-to-human CXTx is an important research direction. This paper summarizes the development and special problems of CXTx, and puts forward the prospect of pig-to-human CXTx into the clinical trial from various problems including model building, current situation, the existing problems, gene modification of pig, immunosuppression in xenotransplantation, coagulation function change, immunosuppressant application, potential risk of infection and first CXTx recipient selection. So as to provide theoretical reference for better pig-to-human CXTx.

表1 目前常见的异种心脏移植供体猪需改造的基因及其作用[31,32,33,34,35,36,37,38,39,40]
1
Groenewegen A, Rutten FH, Mosterd A, et al. Epidemiology of heart failure[J]. Eur J Heart Fail, 2020, 22(8): 1342-1356.
2
Ponikowski P, Anker SD, Alhabib KF, et al. Heart failure: preventing disease and death worldwide[J]. ESC Heart Fail, 2014, 1(1):4-25.
3
Virani SS, Alonso A, Benjamin EJ, et al. Heart disease and stroke statistics-2020 update: a report from the american heart association[J]. Circulation, 2020, 141(9):139.
4
Green EM, Givertz MM. Management of acute right ventricular failure in the intensive care unit[J]. Curr Heart Fail Rep, 2012, 9(3):228-235.
5
Kepinska K, Adamczak DM, Kałużna-Oleksy M. Advanced heart failure: a review[J]. Adv Clin Exp Med, 2019, 28(8):1143-1148.
6
Hardy JD. The first lung transplant in man (1963) and the first heart transplant in man (1964)[J].Transplant Proc, 1999, 31(1-2): 25-29.
7
Rose AG, Cooper DK. A histopathologic grading system of hyperacute (humoral, antibody-mediated) cardiac xenograft and allograft rejection[J]. J Heart Lung Transplant, 1996, 15(8):804-817.
8
Morris Thomas. James Hardy and the first heart transplant[J]. Lancet, 2017, 389(10086): 2280-2281.
9
Bailey LL, Nehlsen-Cannarella SL, Concepcion W, et al. Baboon-to-human cardiac xenotransplantation in a neonate[J]. JAMA, 1985, 254(23):3321.
10
Mccurry KR, Diamond LE, Kooyman DL, et al. Human complement regulatory proteins expressed in transgenic swine protect swine xenografts from humoral injury[J]. Transplant Proc, 1996, 28(2):758.
11
Mccurry KR, Kooyman DL, Alvarado CG, et al. Human complement regulatory proteins protect swine-to-primate cardiac xenografts from humoral injury[J]. Nat Med, 1995, 1(5):423-427.
12
Kuwaki K, Knosalla C, Dor F, et al. Suppression of natural and elicited antibodies in pig-to-baboon heart transplantation using a human anti-human CD154 mAb-based regimen[J]. Am J Transplant, 2015, 4(3):363-372.
13
Mcgregor C, Teotia SS, Byrne GW, et al. Cardiac xenotransplantation: progress toward the clinic[J]. Transplantation, 2004, 78(11):1569-1575.
14
Wang Y, Lei T, Wei L, et al. Xenotransplantation in China: present status[J]. Xenotransplantation, 2019, 26(1):12490.
15
Zhong R. Gal knockout and beyond[J]. Am J Transplant, 2007, 7(1): 5-11.
16
Ekser B, Li P, Cooper DKC. Xenotransplantation: past, present, and future[J]. Curr Opin Organ Transplant, 2017, 22(6): 513-521.
17
Cooper DK, Bottino R. Recent advances in understanding xenotransplantation: implications for the clinic[J]. Expert Rev Clin Immunol, 2015, 11(12):1379-1390.
18
Shu S, Ren J, Song J. Cardiac xenotransplantation: a promising way to treat advanced heart failure[J]. Heart Fail Rev, 2020(1) :71-91.
19
Reichart B, Lngin M, Radan J, et al. Pig-to-non-human primate heart transplantation: The final step toward clinical xenotransplantation?[J]. J Heart Lung Transplant, 2020, 39(8): 751-757.
20
Chan JL, Mohiuddin MM. Heart xenotransplantation[J]. Curr Opin Organ Transplant, 2017, 22(6): 549-554.
21
Kuwaki K, Tseng YL, Dor FJ, et al. Heart transplantation in baboons using alpha1,3-galactosyltransferase gene-knockout pigs as donors: initial experience[J]. Nat Med, 2005, 11(1): 29-31.
22
Cowan PJ, Robson SC. Progress towards overcoming coagulopathy and hemostatic dysfunction associated with xenotransplantation[J]. Int J Surg, 2015, 23(Part B): 296-300.
23
Ezzelarab MB, Ekser B, Isse K, et al. Increased soluble CD154 (CD40 ligand) levels in xenograft recipients correlate with the development of de novo anti-pig IgG antibodies[J]. Transplantation, 2014, 97(5):502-508.
24
Cooper DK, Keogh AM, Brink J, et al. Report of the Xenotransplantation Advisory Committee of the International Society for Heart and Lung Transplantation: the present status of xenotransplantation and its potential role in the treatment of end-stage cardiac and pulmonary diseases[J]. J Heart Lung Transplant, 2000, 19(12):1125-1165.
25
McGregor CG, Davies WR, Oi K, et al. Cardiac xenotransplantation: recent preclinical progress with 3-month median survival[J]. Thorac Cardiovasc Surg, 2005, 130(3): 844-851.
26
Martínez-Comendador J, Marcos-Vidal JM, Gualis J, et al. Subclinical hypothyroidism might increase the risk of postoperative atrial fibrillation after aortic valve replacement[J]. Thorac Cardiovasc Surg, 2016, 64(5):427-433.
27
Iwase H, Ekser B, Hara H, et al. Thyroid hormone: relevance to xenotransplantation[J]. Xenotransplantation, 2016, 23(4):293-299.
28
Cascalho M, Platt JL. Xenotransplantation and other means of organ replacement[J]. Nat Rev Immunol, 2001, 1(2):154-160.
29
Yang YG, Sykes M. Xenotransplantation: current status and a perspective on the future[J]. Nat Rev Immunol, 2007, 7(7):519-531.
30
Byrne G, Stalboerger PE, Heppelmann C, et al. Proteomic identification of non-Gal antibody targets after pig-to-primate cardiac xenotransplantation[J]. Xenotransplantation, 2010, 15(4): 268-276.
31
Diamond LE, Quinn CM, Martin MJ, et al. A human CD46 transgenic pig model system for the study of discordant xenotransplantation[J]. Transplantation, 2001, 71(1):132-142.
32
Cozzi E, White D. The generation of transgenic pigs as potential organ donors for humans[J]. Nat Med, 1995, 1(9): 964-966.
33
Fodor WL, Williams BL, Matis LA, et al. Expression of a functional human complement inhibitor in a transgenic pig as a model for the prevention of xenogeneic hyperacute organ rejection[J]. Proc Natl Acad Sci U S A, 1994, 911(23):11153-11157.
34
Petersen B, Ramackers W, Tiede A, et al. Pigs transgenic for human thrombomodulin have elevated production of activated protein C[J]. Xenotransplantation, 2010, 16(6):486-495.
35
Lin CC, Ezzelarab M, Hara H, et al. Atorvastatin or transgenic expression of TFPI inhibits coagulation initiated by anti-nonGal IgG binding to porcine aortic endothelial cells[J]. J Thromb Haemost, 2010, 8(9):2001-2010.
36
Wheeler DG, Joseph ME, Mahamud SD, et al. Transgenic swine: expression of human CD39 protects against myocardial injury[J]. J Mol Cell Cardiol, 2012, 52(5):958-961.
37
Oropeza M, Petersen B, Carnwath JW, et al. Transgenic expression of the human A20 gene in cloned pigs provides protection against apoptotic and inflammatory stimuli[J]. Xenotransplantation, 2009, 16(6): 522-534.
38
Tena A, Kurtz J, Leonard DA, et al. Transgenic expression of human CD47 markedly increases engraftment in a murine model of pig-to-human hematopoietic cell transplantation[J]. Am J Transplant, 2014, 14(12):2713-2722.
39
Martin C, Plat M, Véronique Nerrière-Daguin, et al. Transgenic expression of CTLA4-Ig by fetal pig neurons for xenotransplantation[J]. Transgenic Res, 2005, 14(4):373.
40
Shen Z, Teng X, Qian X, et al. Immunoregulation effect by overexpression of heme oxygenase-1 on cardiac xenotransplantation[J]. Transplant Proc, 2011, 43(5):1994-1997.
41
Dalmasso AP, Vercellotti GM, Platt JL, et al. Inhibition of complement-mediated endothelial cell cytotoxicity by decay-accelerating factor. Potential for prevention of xenograft hyperacute rejection[J]. Transplantation, 1991, 52(3):530-533.
42
White DJ, Oglesby T, Liszewski MK, et al. Expression of human decay accelerating factor or membrane cofactor protein genes on mouse cells inhibits lysis by human complement[J]. Transpl Int, 1992, 5(Suppl 1): S648-S650.
43
Zhou H, Hara H, Cooper DKC. The complex functioning of the complement system in xenotransplantation[J]. Xenotransplantation, 2019, 26(4): e12517.
44
Dai Y, Vaught TD, Boone J, et al. Targeted disruption of the alpha1,3-galactosyltransferase gene in cloned pigs[J]. Nat Biotechnol, 2002, 20(3):251-255.
45
Kolber-Simonds D, Lai L, Watt SR, et al. Production of alpha-1,3-galactosyltransferase null pigs by means of nuclear transfer with fibroblasts bearing loss of heterozygosity mutations[J]. Proc Natl Acad Sci U S A, 2004, 101(19): 7335-7340.
46
Yamada K, Yazawa K, Shimizu A, et al. Marked prolongation of porcine renal xenograft survival in baboons through the use of alpha1,3-galactosyltransferase gene-knockout donors and the cotransplantation of vascularized thymic tissue[J]. Nat Med, 200511(1):32-34.
47
Burlak C, Paris LL, Lutz AJ, et al. Reduced binding of human antibodies to cells from GGTA1/CMAH KO pigs[J]. Am J Transplant, 2014, 14(8): 14(8):1895-1900.
48
Butler JR, Paris LL, Blankenship RL, et al. Silencing porcine CMAH and GGTA1 genes significantly reduces xenogeneic consumption of human platelets by porcine livers[J]. Transplantation, 2016, 100(3): 571.
49
Tector AJ, Mosser M, Tector M, et al. The possible role of anti-Neu5Gc as an obstacle in xenotransplantation[J]. Front Immunol, 2020, 11:622.
50
Ponticelli C, Banfi G. Thrombotic microangiopathy after kidney transplantation[J]. Transpl Int, 2006, 19(10):789-794.
51
Robson SC, Cooper DK, D′Apice AJ. Disordered regulation of coagulation and platelet activation in xenotransplantation[J]. Xenotransplantation, 2010, 7(3):166-176.
52
Aird WC. Endothelium and allotransplantation[J]. Transplantation, 2006, 82(1 Suppl): S6-S8.
53
Ramackers W, Rataj D, Werwitzke S, et al. Expression of human thrombomodulin on porcine endothelial cells can reduce platelet aggregation but did not reduce activation of complement or endothelium - an experimental study[J]. Transpl Int, 2020, 33(4):437-449.
54
Ezzelarab MB, Isse K, Ekser B, et al. Systemic inflammation in xenograft recipients (SIXR) precedes activation of coagulation in the presence of T cell-directed immunosuppression[J]. Transplantation, 2012, 94(10S): S69.
55
Petersen B, Ramackers W, Lucas-Hahn A. Transgenic expression of human heme oxygenase-1 in pigs confers resistance against xenograft rejection during ex vivo perfusion of porcine kidneys[J]. Xenotransplantation, 2012, 19(3): 355-368.
56
Fischer K, Kraner-Scheiber S, Petersen B, et al. Efficient production of multi-modified pigs for xenotransplantation by "combineering" ,gene stacking and gene editing[J]. Sci Rep, 2016, 6:29081.
57
Hundrieser J, Hein R, Pokoyski C, et al. Role of human and porcine MHC DRB1 alleles in determining the intensity of individual human anti-pig T-cell responses. Xenotransplantation. 2019 Jul;26(4): e12523.
58
Ladowski JM, Reyes LM, Martens GR, et al. Swine leukocyte antigen class Ⅱ is a xenoantigen[J]. Transplantation, 2018, 102(2): 249-254.
59
Cozzi E, Vial C, Ostlie D, et al. Maintenance triple immunosuppression with cyclosporin A, mycophenolate sodium and steroids allows prolonged survival of primate recipients of hDAF porcine renal xenografts[J]. Xenotransplantation, 2010, 10(4):300-310.
60
Nanno Y, Burlak C. Xenotransplantation literature update, July/August 2020[J]. Xenotransplantation, 2020, 27(6): e12653.
61
Pham MX, Hunt SA, Johnson FL. Cardiac xenotransplantation[J]. Coron Artery Dis, 2004, 15(2): 99-105.
62
Doménech N, Sánchez-Corral P. Xenoantibodies and complement activity determinations by flow cytometry in pig-to-primate xenotransplantation[J]. Methods Mol Biol, 2020, 2110:73-81.
63
Byrne GW, Davies WR, Oi K, et al. Increased immunosuppression, not anticoagulation, extends cardiac xenograft survival[J]. Transplantation, 2006, 82(12):1787-1791.
64
Mohiuddin MM, Corcoran PC, Singh AK, et al. B-cell depletion extends the survival of GTKO.hCD46Tg pig heart xenografts in baboons for up to 8 months[J]. Am J Transplant, 2012, 12(3):763-771.
65
Abicht JM, Mayr T, Reichart B, et al. Pre-clinical heterotopic intrathoracic heart xenotransplantation: a possibly useful clinical technique[J]. Xenotransplantation, 2016, 22(6):427-442.
66
Cooper D, Ezzelarab MB, Hara H, et al. The pathobiology of pig-to-primate xenotransplantation: a historical review[J]. Xenotransplantation, 2016, 23(2):83-105.
67
Iwase H, Ezzelarab MB, Ekser B, et al. The role of platelets in coagulation dysfunction in xenotransplantation, and therapeutic options[J]. Xenotransplantation, 2014, 21(3):201-220.
68
Fishman JA. Infection in xenotransplantation: opportunities and challenges[J]. Curr Opin Organ Transplant, 2019, 24(5):527-534.
69
Fishman JA. Infectious disease risks in xenotransplantation[J]. Am J Transplant, 2018, 18(8): 1857-1864.
70
Denner J. Porcine lymphotropic herpesviruses (PLHVs) and xenotranplantation[J]. Viruses, 2021, 13(6):1072.
71
Denner J. Recombinant porcine endogenous retroviruses (PERV-A/C): a new risk for xenotransplantation?[J]. Arch Virol, 2008, 153(8):1421-1426.
72
Güell M. Genome-wide PERV inactivation in pigs using CRISPR/Cas9[J]. Methods Mol Biol, 2020, 2110:139-149.
73
刘永锋,郑树森. 器官移植学[M]. 北京:人民卫生出版社,2014.
74
Cooper D, Gollackner B, Sachs DH. Will the pig solve the transplantation backlog?[J]. Annual Review of Medicine, 2002, 53(1):133-147.
75
Lu T, Yang B, Wang R, et al. Xenotransplantation: current status in preclinical research[J]. Front Immunol, 2020, 10:3060.
76
Onions D, Cooper DK, Alexander TJ, et al. An approach to the control of disease transmission in pig-to-human xenotransplantation[J]. Xenotransplantation, 2000, 7(2):143-155.
77
Center for Biologics Evaluation and Research. Xenotransplantation guidances-guidance for industry: source animal, product, preclinical, and clinical issues concerning the use of xenotransplantation products in humans[EB/OL].(2016-12)[2022-02-24].

URL    
78
Pierson RN 3rd, Burdorf L, Madsen JC, et al. Pig-to-human heart transplantation: Who goes first?[J]. Am J Transplant, 2020, 20(10): 2669-2674.
79
Hong SH, Kim HJ, Kang SJ, et al. Novel immunomodulatory approaches for porcine islet xenotransplantation[J]. Curr Diab Rep, 2021, 21(1): 3.
80
Cooper D, Wijkstrom M, Hariharan S, et al. Selection of patients for initial clinical trials of solid organ xenotransplantation[J]. Transplantation, 2016, 101(7):1551-1558.
81
Dew MA, DiMartini AF, Dobbels F, et al. The 2018 ISHLT/APM/AST/ICCAC/STSW recommendations for the psychosocial evaluation of adult cardiothoracic transplant candidates and candidates for long-term mechanical circulatory support[J]. J Heart Lung Transplant, 2018, 37(7): 803-823.
[1] 李颖, 潘绍卿, 丁明岩, 孙丹丹, 曲海波, 侯培培, 朱芳. 实时三维超声心动图对高度房室传导阻滞伴射血分数保留的心力衰竭患者左束支区域起搏后左心室功能及同步性的评价[J]. 中华医学超声杂志(电子版), 2023, 20(04): 430-436.
[2] 马敏榕, 李聪, 周勤. 宫颈癌治疗研究现状[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 497-504.
[3] 钟文涛, 赵阳, 沈晓菲, 杜峻峰. 自噬在脓毒症中的作用及靶向治疗研究进展[J]. 中华普外科手术学杂志(电子版), 2023, 17(02): 221-225.
[4] 巨春蓉, 何建行, 钟南山. 咪唑立宾在器官移植领域的应用及展望[J]. 中华移植杂志(电子版), 2023, 17(04): 227-231.
[5] 中国康复医学会器官移植康复专业委员会. 成人实体器官移植后糖尿病管理专家共识[J]. 中华移植杂志(电子版), 2023, 17(04): 205-220.
[6] 中国器官移植发展基金会器官移植受者健康管理专家委员会, 中国医师协会器官移植医师分会, 中华医学会器官移植学分会, 国家肝脏移植质控中心. 肝移植受者雷帕霉素靶蛋白抑制剂临床应用中国专家共识(2023版)[J]. 中华移植杂志(电子版), 2023, 17(04): 193-204.
[7] 徐烨, 李婧, 刘冉佳, 潘晨, 郭明星, 崔向丽. 2017至2021年中国95家医疗机构肝移植术后免疫抑制剂用药分析[J]. 中华移植杂志(电子版), 2023, 17(03): 134-139.
[8] 刘路浩, 苏泳鑫, 曾丽娟, 张鹏, 陈荣鑫, 徐璐, 李光辉, 方佳丽, 马俊杰, 陈正. 新型冠状病毒感染疫情期间肾移植受者免疫抑制剂服药依从性研究[J]. 中华移植杂志(电子版), 2023, 17(03): 140-145.
[9] 龚茂迪, 李涛, 陈伟, 徐述雄. 一例长期口服糖皮质激素患者在经皮肾镜碎石取石术后反复发热的管理经验[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(03): 284-287.
[10] 程庆砾. 免疫抑制剂在肾小球疾病中的合理使用[J]. 中华肾病研究电子杂志, 2023, 12(02): 120-120.
[11] 高军龙, 张昕, 周倩倩, 袁媛. 重症急性胰腺炎早期免疫抑制的研究进展[J]. 中华重症医学电子杂志, 2023, 09(03): 286-291.
[12] 王震, 杨晓月, 苏康康, 王朝阳, 李少杰, 陈淑霞, 谷剑. β受体阻滞剂对心力衰竭合并房颤患者预后影响的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(04): 479-482.
[13] 杨旭希, 郑吉洋, 陈秀梅, 陈淑玲, 杨峻青, 苏芝琪, 左咏臻, 广东省医师协会心力衰竭专业医师分会, 广东省护士协会介入护士分会. 慢性心力衰竭患者容量管理护理专家共识[J]. 中华介入放射学电子杂志, 2023, 11(03): 201-207.
[14] 孔倩文, 刘姗, 曾彩虹, 曾庆春. 有氧运动和抗阻运动对心力衰竭患者心率变异性影响的观察性研究[J]. 中华心脏与心律电子杂志, 2023, 11(03): 160-164.
[15] 张诚霖, 李学美, 巫惠心, 李晓燕. 心力衰竭患者容量管理护理质量评价指标体系的构建[J]. 中华心脏与心律电子杂志, 2023, 11(03): 173-178.
阅读次数
全文


摘要