切换至 "中华医学电子期刊资源库"

中华移植杂志(电子版) ›› 2022, Vol. 16 ›› Issue (04): 201 -209. doi: 10.3877/cma.j.issn.1674-3903.2022.04.002

论著

肾移植术后BK病毒相关性肾病核心基因及免疫微环境的生物信息学分析
董博清1, 豆猛1, 张静1, 冯新顺1, 郑瑾1, 李潇1, 丁小明1, 薛武军1, 李杨1,()   
  1. 1. 710061 西安交通大学第一附属医院肾移植科 西安交通大学器官移植研究所
  • 收稿日期:2022-05-07 出版日期:2022-08-25
  • 通信作者: 李杨
  • 基金资助:
    陕西省重点研发计划(2022SF-148); 西安交通大学基本科研业务基金(xzy012021060); 中国器官移植发展基金课题

Bioinformatics analysis of the hub genes and immune microenvironment in BK virus-associated nephropathy after renal transplantation

Boqing Dong1, Meng Dou1, Jing Zhang1, Xinshun Feng1, Jin Zheng1, Xiao Li1, Xiaoming Ding1, Wujun Xue1, Yang Li1,()   

  1. 1. Department of Kidney Transplantation, First Affiliated Hospital & Institute of Organ Transplantation, Xi′an Jiaotong University, Xi′an 710061, China
  • Received:2022-05-07 Published:2022-08-25
  • Corresponding author: Yang Li
目的

通过生物信息学方法分析肾移植术后BK病毒相关性肾病(BKVAN)的核心基因及其与浸润的免疫细胞相关性。

方法

从美国国立生物技术信息中心基因表达综合数据库下载BKVAN相关数据集GSE75693和GSE72925,BK病毒(BKV)血症相关数据集GSE47199。合并GSE75693和GSE72925后筛选差异表达基因(DEGs),然后进行基因本体生物过程(GOBP)以及京都基因与基因组百科全书(KEGG)通路分析,并通过蛋白-蛋白相互作用(PPI)网络进一步筛选核心基因。使用CIBERSORT进行免疫浸润分析,然后计算差异的免疫细胞和核心基因的相关性。最后,在GSE47199数据集筛选BKV血症和BKVAN共同的核心基因,使用基因集富集分析(GSEA)鉴定共同的核心基因分别在BKVAN和BKV血症中的生物过程。所有统计分析及可视化均基于R语言(4.0.2)。P<0.05为差异有统计学意义。

结果

在合并数据中共筛选出175个上调及70个下调DEGs。在PPI网络中,通过5种方法交集得到9个核心基因,核心基因主要富集在免疫细胞活化与功能相关的进程;在KEGG分析中,核心基因主要富集在病毒蛋白与细胞因子和细胞因子受体间相互作用、细胞因子-细胞因子受体间相互作用以及趋化因子信号通路等。免疫浸润分析表明PTPRC、CCL5、TYROBP、CXCL10、CD2和CXCL9与BKVAN中浸润的免疫细胞相关。CD2是BKVAN和BKV血症的共同核心基因。

结论

通过生物信息学方法筛选出BKVAN的核心基因,其中PTPRC、CCL5、TYROBP、CXCL10、CD2和CXCL9与BKVAN中浸润的免疫细胞相关,CD2是BKVAN和BKV血症的共同核心基因,这些标志物为肾移植术后BKVAN的诊治提供依据。

Objective

To analyze hub genes in BK virus-associated nephropathy (BKVAN) after renal transplantation and its relationship with infiltrating immune cells by bioinformatics methods.

Methods

GSE75693 and GSE72925 (BKVAN-related datasets) and GSE47199 (a BK viremia-related dataset) were downloaded from GEO database. Then GSE75693 and GSE72925 were combined to screen for differential expression genes (DEGs), followed by gene ontology biological process (BPGO), Kyoto encyclopedia of genes and genomes (KEGG) pathway and protein-protein interaction (PPI) network analysis to further screen hub genes. Immune infiltration analysis was performed using CIBERSORT, and then correlations between differential immune cells and hub genes were calculated. Finally, common hub genes in both BK viremia and BKVAN were screened in the GSE47199 dataset, and the biological process of common hub genes in BKVAN and BK viremia were identified using gene set enrichment analysis (GSEA). All statistical analysis and visualizations were based on R language (4.0.2). P<0.05 was considered statistically significant.

Results

A total of 175 up-regulated and 70 down-regulated DEGs were screened from the combined dataset. Nine hub genes were obtained from the PPI network by five methods of intersection, and the hub genes were mainly enriched in the processes related to immune cell activation and function; in the KEGG analysis, the hub genes were mainly enriched in viral proteins, cytokine and cytokine receptor interactions, cytokine-cytokine receptor interactions and chemokine signaling pathways. Immune infiltration analysis showed that PTPRC, CCL5, TYROBP, CXCL10, CD2 and CXCL9 were associated with infiltrating immune cells in BKVAN. CD2 was the common hub gene for both BKVAN and BK viremia.

Conclusions

In this study, the hub genes of BKVAN were screened by bioinformatics, among which PTPRC, CCL5, TYROBP, CXCL10, CD2 and CXCL9 were associated with immune cells infiltration in BKVAN, and CD2 was the common hub gene of BKVAN and BK viremia.

图1 BKVAN DEGs可视化 注:BKVAN. BK病毒相关性肾病;DEGs.差异表达基因;a.火山图,展示|差异倍数(log2FC)|>1的基因,此外|差异倍数(log2FC)|>1.5的基因在图中标记并列出基因名;b.热图,展示前25个上调以及下调DEGs
图2 BKVAN DEGs富集分析 注:BKVAN. BK病毒相关性肾病;DEGs.差异表达基因;a.245个DEGs基因本体生物学过程分析结果;b.DEGs京都基因与基因组百科全书通路分析结果
图3 构建蛋白质-蛋白质相互作用网络与筛选核心基因 注:DEGs.差异表达基因;a. MCODE中得分最高的子网络(11.471分); b.通过MNC、Degree、Stress、Radiality和Closeness交集筛选出9个核心基因;c. 9个核心基因的基因本体生物过程分析结果;d. 9个核心基因的KEGG通分析结果
图4 GSE75693和GSE72925合并数据集中免疫细胞分布及差异浸润的免疫细胞与核心基因的Pearson相关性分析 注:BKVAN. BK病毒相关性肾病;PTPRC.蛋白酪氨酸磷酸酶受体C型;CCL. C-C基序趋化因子配体;TYROBP. TYRO蛋白酪氨酸激酶结合蛋白;CXCL. C-X-C基序趋化因子配体;ITGB2.整合素亚基β2; a. BKVAN和功能稳定的移植物中免疫细胞亚群的分布;b. BKVAN与功能稳定的移植物差异浸润的免疫细胞与核心基因的Pearson相关性分析,|相关系数(r)|>0.6以黑体标记;*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001
图5 BKVAN和BKV血症共同核心基因筛选 注:BKVAN. BK病毒相关性肾病;BKV. BK病毒;a和b. CD2分别诊断BKVAN和BKV血症受试者工作特征曲线;c和d. CD2在BKVAN和BKV血症中的表达量
图6 BKVAN和BKV血症中CD2基因集富集分析 注:BKVAN. BK病毒相关性肾病;GOBP.基因本体生物过程;BKV. BK病毒;a. CD2在BKVAN中的标准化富集分数前5位的GOBP; b. CD2在BKV血症中标准化富集分数前5位的GOBP
5
Baek CH, Kim H, Yu H, et al. Risk factors of acute rejection in patients with BK nephropathy after reduction of immunosuppression [J]. Ann Transplant, 2018, 23: 704-712.
6
Hughes CE, Nibbs RJB. A guide to chemokines and their receptors[J]. FEBS J, 2018, 285(16): 2944-2971.
7
Mohammadi MH, Kariminik A. CC and CXC chemokines play key roles in the development of polyomaviruses related pathological conditions [J]. Virol J, 2021, 18(1): 111.
8
Kawai T, Akira S. TLR signaling [J]. Cell Death Differ, 2006, 13(5): 816-825.
9
Heutinck KM, Rowshani AT, Kassies J, et al. Viral double-stranded RNA sensors induce antiviral, pro-inflammatory, and pro-apoptotic responses in human renal tubular epithelial cells [J]. Kidney Int, 2012, 82(6): 664-675.
10
Ribeiro A, Wörnle M, Motamedi N, et al. Activation of innate immune defense mechanisms contributes to polyomavirus BK-associated nephropathy [J]. Kidney Int, 2012, 81(1): 100-111.
11
Kariminik A, Yaghobi R, Dabiri S. CXCL9 expression and polyomavirus BK infectivity in renal transplant patients with nephropathy [J]. Cell Mol Biol (Noisy-le-grand), 2016, 62(1): 104-108
12
Charbonneau H, Tonks NK, Walsh KA, et al. The leukocyte common antigen (CD45): a putative receptor-linked protein tyrosine phosphatase [J]. Proc Natl Acad Sci U S A, 1988, 85(19): 7182-7186.
13
Gabaev I, Steinbrück L, Pokoyski C, et al. The human cytomegalovirus UL11 protein interacts with the receptor tyrosine phosphatase CD45, resulting in functional paralysis of T cells [J]. PLoS Pathog, 2011, 7(12): e1002432.
14
Mulrooney TJ, Posch PE, Hurley CK. DAP12 impacts trafficking and surface stability of killer immunoglobulin-like receptors on natural killer cells [J]. J Leukoc Biol, 2013, 94(2): 301-313.
15
Liu Y, Li R, Chen XX, et al. Nonmuscle myosin heavy chain IIA recognizes sialic acids on sialylated RNA viruses to suppress proinflammatory responses via the DAP12-Syk pathway [J]. mBio, 2019, 10(3): e00574-19.
16
Kristiansen M, Graversen JH, Jacobsen C,et al. Identification of the haemoglobin scavenger receptor [J]. Nature, 2001, 409(6817): 198-201.
17
Li P, Cheng D, Wen J, et al. The immunophenotyping of different stages of BK virus allograft nephropathy [J]. Ren Fail, 2019, 41(1): 855-861.
18
Ostermann G, Weber KS, Zernecke A, et al. JAM-1 is a ligand of the beta(2) integrin LFA-1 involved in transendothelial migration of leukocytes [J]. Nat Immunol, 2002, 3(2): 151-158.
19
Altorki T, Muller W, Brass A, et al. The role of β2 integrin in dendritic cell migration during infection [J]. BMC Immunol, 2021, 22(1): 2.
20
Womer KL, Huang Y, Herren H, et al. Dendritic cell deficiency associated with development of BK viremia and nephropathy in renal transplant recipients [J]. Transplantation, 2010, 89(1): 115-123.
21
Rouleau M, Mollereau B, Bernard A, et al. CD2 induced apoptosis of peripheral T cells [J]. Transplant Proc, 1997, 29(5): 2377-2378.
1
Low J, Humes HD, Szczypka M, et al. BKV and SV40 infection of human kidney tubular epithelial cells in vitro[J]. Virology, 2004, 323(2): 182-188.
2
Schwarz A, Linnenweber-Held S, Heim A, et al. Viral origin, clinical course, and renal outcomes in patients with BK virus infection after living-donor renal transplantation[J]. Transplantation, 2016, 100(4): 844-853.
3
Drachenberg CB, Papadimitriou JC, Hirsch HH, et al. Histological patterns of polyomavirus nephropathy: correlation with graft outcome and viral load[J]. Am J Transplant, 2004, 4(12): 2082-2092.
4
Kidney Disease: Improving Global Outcomes (KDIGO) Transplant Work Group. KDIGO clinical practice guideline for the care of kidney transplant recipients[J]. Am J Transplant, 2009, 9(Suppl 3): S1-S155.
22
Wyss DF, Choi JS, Li J, et al. Conformation and function of the N-linked glycan in the adhesion domain of human CD2 [J]. Science, 1995, 269(5228): 1273-1278.
23
Sayre PH, Reinherz EL. Structure and function of the erythrocyte receptor CD2 on human T lymphocytes: a review [J]. Scand J Rheumatol Suppl, 1988, 76: 131-144.
24
Wakkach A, Cottrez F, Groux H. Differentiation of regulatory T cells 1 is induced by CD2 costimulation [J]. J Immunol, 2001, 167(6): 3107-3113.
25
Renner FC, Dietrich H, Bulut N, et al. The risk of polyomavirus-associated graft nephropathy is increased by a combined suppression of CD8 and CD4 cell-dependent immune effects [J]. Transplant Proc, 2013, 45(4): 1608-1610.
26
Cui K, Liu C, Li X, et al. Comprehensive characterization of the rRNA metabolism-related genes in human cancer [J]. Oncogene, 2020, 39(4): 786-800.
27
Leboeuf C, Wilk S, Achermann R, et al. BK polyomavirus-specific 9mer CD8 T cell responses correlate with clearance of BK viremia in kidney transplant recipients: first report from the Swiss Transplant Cohort Study [J]. Am J Transplant, 2017, 17(10): 2591-2600.
28
Hu Q, Lyon CJ, Fletcher JK, et al. Extracellular vesicle activities regulating macrophage- and tissue-mediated injury and repair responses [J]. Acta Pharm Sin B, 2021, 11(6): 1493-1512.
29
Wilhelm M, Kaur A, Wernli M, et al. BK polyomavirus-specific CD8 T-cell expansion in vitro using 27mer peptide antigens for developing adoptive T-cell transfer and vaccination [J]. J Infect Dis, 2021, 223(8): 1410-1422.
30
Holtmeier W, Kabelitz D. γδ T cells link innate and adaptive immune responses [J]. Chem Immunol Allergy, 2005, 86: 151-183.
31
Arruda LCM, Gaballa A, Uhlin M. Impact of γδ T cells on clinical outcome of hematopoietic stem cell transplantation: systematic review and meta-analysis [J]. Blood Adv, 2019, 3(21): 3436-3448.
32
Pouteil-Noble C, Ecochard R, Landrivon G, et al. Cytomegalovirus infection-an etiological factor for rejection? A prospective study in 242 renal transplant patients [J]. Transplantation, 1993, 55(4): 851-857.
33
Zhao X, Li Y, Ohe H, et al. Intragraft Vδ1 γδ T cells with a unique T-cell receptor are closely associated with pediatric semiallogeneic liver transplant tolerance [J]. Transplantation, 2013, 95(1): 192-202.
34
Portolani M, Piani M, Gazzanelli G, et al. Restricted replication of BK virus in human lymphocytes [J]. Microbiologica, 1985, 8(1): 59-66.
[1] 牟志公, 谢明均. 基于生物信息学筛选早发性乳腺癌差异表达基因[J]. 中华乳腺病杂志(电子版), 2022, 16(01): 6-13.
[2] 丁相元, 严思奇, 柳俊杰, 颜伟. 通过生物信息学分析发现胃癌的靶点基因和生物学特性[J]. 中华普通外科学文献(电子版), 2022, 16(01): 20-26.
[3] 刘一霆, 邱涛, 陈忠宝, 马枭雄, 王天宇, 张龙, 邹寄林, 金泽亚, 徐雨, 周江桥. 急性肾损伤供肾对肾移植受者预后影响分析[J]. 中华移植杂志(电子版), 2022, 16(03): 140-146.
[4] 杨素霞, 朱晓隆, 朱有华, 陈宇童, 李雨虹, 隋明星, 李烟花. 不同补液方案对活体肾移植受者术后多尿期临床疗效和护理工作量的影响分析[J]. 中华移植杂志(电子版), 2022, 16(03): 160-164.
[5] 王彦峰. 肾脏机械灌注联合抗生素预防供体来源感染[J]. 中华移植杂志(电子版), 2022, 16(02): 0-.
[6] 孔晨阳, 邱涛, 刘一霆, 陈忠宝, 马枭雄, 王天宇, 张亚龙, 喻博, 周江桥. 供肾Remuzzi评分对肾移植受者预后的指导作用[J]. 中华移植杂志(电子版), 2022, 16(02): 78-82.
[7] 马枭雄, 邱涛, 陈忠宝, 邹寄林, 张龙, 周江桥. 致敏受者肾移植四例并文献复习[J]. 中华移植杂志(电子版), 2022, 16(02): 88-92.
[8] 张江伟, 宫惠琳, 郑瑾, 燕航, 冯新顺, 李杨, 李潇, 丁小明. 肾移植术后肺部毛霉及耶氏肺孢子菌混合性真菌感染一例并文献复习[J]. 中华移植杂志(电子版), 2022, 16(02): 93-96.
[9] 谢文卿, 王苏娅, 彭文翰, 吕军好, 何哲池, 陈江华. 肾移植术后中远期急性排斥反应临床研究[J]. 中华移植杂志(电子版), 2022, 16(01): 32-37.
[10] 蒋丽琼, 袁珂, 许照洁, 马江林, 陈春, 王春林. 肾移植术后妊娠受者34周前分娩危险因素分析[J]. 中华移植杂志(电子版), 2022, 16(01): 38-42.
[11] 艾亮, 成柯, 张盛. 再次肾移植术后并发移植后淋巴增殖性疾病伴结核病一例[J]. 中华移植杂志(电子版), 2022, 16(01): 46-48.
[12] 李德峰, 毛杨, 付万垒. 非特异性间质性肺炎相关基因筛选和生物信息学分析[J]. 中华肺部疾病杂志(电子版), 2022, 15(03): 306-310.
[13] 杨帆, 倪兆慧. 肾移植术后BK病毒相关肾病的诊治进展[J]. 中华肾病研究电子杂志, 2022, 11(02): 90-93.
[14] 王帅帅, 周燕斌, 黄丽霞, 汪昕, 邱艳丽, 陈思民, 邓佳婷, 徐雄业, 苏严, 李少丽, 谷金萃. 核仁蛋白16在肺腺癌中的表达及其临床意义[J]. 中华诊断学电子杂志, 2022, 10(03): 177-182.
[15] 高军, 朱珍, 李虹, 林欣, 宋一祎, 孔志斌. 核不均一核糖核蛋白C在肺腺癌中的表达及对临床预后预测价值[J]. 中华诊断学电子杂志, 2022, 10(02): 113-118.
阅读次数
全文


摘要