切换至 "中华医学电子期刊资源库"

中华移植杂志(电子版) ›› 2022, Vol. 16 ›› Issue (04) : 210 -215. doi: 10.3877/cma.j.issn.1674-3903.2022.04.003

论著

肾移植受者T细胞亚群绝对计数动态监测对感染的预警作用
Mounia Lalouly1, 王祥慧1,(), 周佩军1, 邵琨1, 安会敏1, 周全1   
  1. 1. 200025 上海交通大学医学院附属瑞金医院肾移植中心
  • 收稿日期:2021-11-20 出版日期:2022-08-25
  • 通信作者: 王祥慧
  • 基金资助:
    国家自然科学基金(81973387)

Role of dynamic monitoring of T cell subsets absolute counts in predicting infection in renal allograft recipients

Mounia Lalouly1, Xianghui Wang1,(), Peijun Zhou1, Kun Shao1, Huimin An1, Quan Zhou1   

  1. 1. Renal Transplantation Center, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
  • Received:2021-11-20 Published:2022-08-25
  • Corresponding author: Xianghui Wang
引用本文:

Mounia Lalouly, 王祥慧, 周佩军, 邵琨, 安会敏, 周全. 肾移植受者T细胞亚群绝对计数动态监测对感染的预警作用[J/OL]. 中华移植杂志(电子版), 2022, 16(04): 210-215.

Mounia Lalouly, Xianghui Wang, Peijun Zhou, Kun Shao, Huimin An, Quan Zhou. Role of dynamic monitoring of T cell subsets absolute counts in predicting infection in renal allograft recipients[J/OL]. Chinese Journal of Transplantation(Electronic Edition), 2022, 16(04): 210-215.

目的

探讨长期监测T细胞亚群绝对计数水平对肾移植受者术后感染的预警作用。

方法

回顾性分析2017年1月至2021年5月在上海交通大学医学院附属瑞金医院26例行肾移植术后新发感染受者临床资料(感染组,感染发生在移植后1~240个月)。选择129例同期肾移植术后无感染、健康受者作为对照组。感染组连续或定期测量外周血T细胞亚群CD3、CD4和CD8绝对计数,并与对照组检测数据进行比较。根据移植后采样时间将感染组和对照组各分为6个亚组,分析感染亚组与其相应对照亚组之间T细胞亚群绝对计数的差异。正态分布计量资料采用两独立样本t检验和单因素方差分析比较,非正态分布计量资料采用Mann-Whitney U检验比较,计数资料采用χ2检验比较。使用受试者工作特征(ROC)曲线分析T细胞亚群绝对计数在肾移植术后预警感染性疾病的最优值。P<0.05为差异有统计学意义。

结果

感染组和对照组受者CD4/CD8比值分别为(1.2±0.5)、(1.3±0.6),差异无统计学意义(t=0.610,P>0.05)。感染组受者CD3、CD4和CD8 T细胞绝对计数[(367±212)、(189±117)和(161±92)个/μL]均低于对照组[(1 374±663)、(695±334)和(626±377)个/μL],差异均有统计学意义(t=14.036、13.541和12.311,P均<0.05)。CD3、CD4和CD8 T细胞绝对计数在6个感染亚组受者中差异均无统计学意义(P均>0.05)。对照亚组1受者CD3、CD4和CD8 T细胞绝对计数均低于对照亚组5,差异均有统计学意义(P均<0.05)。CD4、CD8和CD3绝对计数预测肾移植术后感染性疾病最优截断值分别为712、362和255个/μL,敏感度分别为94.6%、92.2%和96.1%,特异度分别为92.3%、96.2%和88.5%。

结论

肾移植受者低T细胞亚群绝对计数水平具有预示及预警感染风险的作用。

Objective

To investigate the kinetics of T cell subsets absolute counts as a long-term monitoring tool during infections.

Methods

The clinical data of 26 kidney transplant recipients (KTRs), transplanted at Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, with newly diagnosed infection from January 2017 to May 2021 were retrospectively analyzed (infection group, infections occurred between 1 month and 240 months post-transplant). A total of 129 healthy KTRs without infection from matching post-transplant periods were selected as a control group. T cell subsets CD3+ , CD4+ , and CD8+ absolute counts in peripheral blood were continuously or periodically measured in the infected group, and then compared with the data of the control group. Afterward, the infected and control groups were each further split into 6 subgroups according to the sampling time post-transplant. Then we analyzed the kinetics of T cell subsets absolute counts between each control subgroups, and the difference between each infected subgroup and their corresponding control subgroup. Normally distributed data were compared using two independent samples t-test and one-way ANOVA. Non-normally distributed data were compared using Mann-Whitney U test. Nominal data were compared using χ2 test. Receiver operating characteristic (ROC) curves were used to analyze the optimal cut-off value of absolute T cell subset counts in determining patients at risk of infectious diseases following renal transplantation. P<0.05 was considered statistically significant.

Results

No difference was found between the CD4+ /CD8+ ratio of the infected group (1.2±0.5) and that of the control group (1.3±0.6) (t=0.610, P>0.05). The CD3+ , CD4+ , and CD8+ T cells absolute counts of the infected group were significantly lower than those of the control group [(367±212), (189±117), and (161±92) cells/μL vs (1, 374±663), (695±334), and (626±377) cells/μL, respectively] (t=14.036, 13.541 and 12.311, all P values<0.05). No significant difference was found in the CD3+ , CD4+ , and CD8+ T cells absolute counts across the 6 subgroups of the infected group (all P values >0.05). However, the CD3+ , CD4+ , and CD8+ T cells absolute counts of the control subgroup 1 were lower than those of the control subgroup 5 (all P values <0.05). The best cut-off values of CD4+ , CD8+ , and CD3+ determined from the ROC curves analysis in this patient population were 712, 362, and 255 cells/μL, with a sensitivity of 94.6%, 92.2%, and 96.1%, and specificity of 92.3%, 96.2%, and 88.5%, respectively.

Conclusion

Low T cell subsets absolute counts may be regarded as a potential risk factor for developing opportunistic infections and a biomarker with meaningful predictive value.

表1 感染组和对照组肾移植受者一般资料比较
表2 感染各亚组和对照各亚组肾移植受者T细胞亚群绝对计数比较(个/μL,±s)
表3 T细胞亚群绝对计数预测肾移植术后感染性疾病最优值分析结果
图1 T细胞亚群绝对计数预测肾移植术后感染性疾病受试者工作特征曲线
1
Coemans M, Süsal C, Döhler B, et al. Analyses of the short- and long-term graft survival after kidney transplantation in Europe between 1986 and 2015[J]. Kidney Int, 2018, 94(5):964-973.
2
Thongprayoon C, Hansrivijit P, Leeaphorn N, et al. Recent advances and clinical outcomes of kidney transplantation[J]. J Clin Med, 2020, 9(4):1193.
3
Fishman JA. Infection in solid-organ transplant recipients[J]. N Engl J Med, 2007, 357(25):2601-2614.
4
Kinnunen S, Karhapää P, Juutilainen A, et al. Secular trends in infection-related mortality after kidney transplantation[J]. Clin J Am Soc Nephrol, 2018, 13(5):755-762.
5
Vanichanan J, Udomkarnjananun S, Avihingsanon Y, et al. Common viral infections in kidney transplant recipients[J]. Kidney Res Clin Pract, 2018, 37(4):323-337.
6
Farmer JR, DeLelys M. Flow cytometry as a diagnostic tool in primary and secondary immune deficiencies[J]. Clin Lab Med, 2019, 39(4):591-607.
7
Fernández-Ruiz M, López-Medrano F, Aguado JM. Predictive tools to determine risk of infection in kidney transplant recipients[J]. Expert Rev Anti Infect Ther, 2020, 18(5):423-441.
8
Liu W, Wang K, Zhao Y, et al. Clinical relevance of a CD4 T cell immune function assay in the diagnosis of infection in pediatric living-donor liver transplantation[J]. Exp Ther Med, 2019, 18(5):3823-3828.
9
Gardiner BJ, Nierenberg NE, Chow JK, et al. Absolute lymphocyte count: a predictor of recurrent cytomegalovirus disease in solid organ transplant recipients[J]. Clin Infect Dis, 2018, 67(9):1395-1402.
10
Fernández-Ruiz M, López-Medrano F, Allende LM, et al. Kinetics of peripheral blood lymphocyte subpopulations predicts the occurrence of opportunistic infection after kidney transplantation[J]. Transpl Int, 2014, 27(7):674-685.
11
Struijk GH, Gijsen AF, Yong SL, et al. Risk of pneumocystis jiroveci pneumonia in patients long after renal transplantation[J]. Nephrol Dial Transplant, 2011, 26(10):3391-3398.
12
Prakash K, Chandorkar A, Saharia KK. Utility of CMV-specific immune monitoring for the management of CMV in solid organ transplant recipients: a clinical update[J]. Diagnostics, 2021, 11(5):875.
13
Navarro D, Fernández-Ruiz M, Aguado JM, et al. Going beyond serology for stratifying the risk of CMV infection in transplant recipients[J]. Rev Med Virol, 2019, 29(1):e2017.
14
López-Oliva MO, Martínez V, Rodríguez-Sanz A, et al. Pre-transplant assessment of pp65-specific CD4 T cell responses identifies CMV-seropositive patients treated with rATG at risk of late onset infection[J]. Clin Immunol, 2020, 211:108329.
15
Schachtner T, Stein M, Reinke P. CMV-specific T cell monitoring offers superior risk stratification of CMV-seronegative kidney transplant recipients of a CMV-seropositive donor[J]. Transplantation, 2017, 101(10):e315-e325.
16
Calarota SA, Zelini P, De Silvestri A, et al. Kinetics of T-lymphocyte subsets and posttransplant opportunistic infections in heart and kidney transplant recipients[J]. Transplantation, 2012, 93(1):112-119.
17
Thibaudin D, Alamartine E, Mariat C, et al. Long-term kinetic of T-lymphocyte subsets in kidney-transplant recipients: influence of anti-T-cell antibodies and association with posttransplant malignancies[J]. Transplantation, 2005, 80(10):1514-1517.
18
Calarota SA, Chiesa A, Silvestri AD, et al. T-lymphocyte subsets in lung transplant recipients: association between nadir CD4 T-cell count and viral infections after transplantation[J]. J Clin Virol, 2015, 69:110-116.
19
王勤拯,王峰,朱晓丹. 外周血淋巴细胞亚群变化在肝移植术后患者早期感染中的意义[J]. 精准医学杂志2020, 35(4):372-375.
[1] 邹永康, 石雍, 徐贤刚, 张帅民, 刘衍, 杨生鹏, 叶啟发, 陈根, 张毅. 肾移植术后手术切口米根霉感染伴菌血症一例并文献复习[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 289-292.
[2] 中华医学会器官移植学分会. 遗体捐献肾脏获取手术技术操作指南[J/OL]. 中华移植杂志(电子版), 2024, 18(05): 257-265.
[3] 吕玥彤, 靳梦圆, 周大为, 叶啟发. 机器人辅助下肾移植的临床进展与争议[J/OL]. 中华移植杂志(电子版), 2024, 18(04): 242-246.
[4] 吕军好, 林锦雯, 张心怡, 陈江华. 细胞外囊泡在肾移植诊断和治疗中的研究进展[J/OL]. 中华移植杂志(电子版), 2024, 18(03): 186-192.
[5] 尚丽红, 王志华, 张文艳, 朱琳茹, 周华. 内皮粘蛋白抗体与肾移植术后抗体介导排斥反应和移植肾预后的研究[J/OL]. 中华移植杂志(电子版), 2024, 18(03): 165-170.
[6] 陆婷, 陈浩, 王雪静, 谭若芸, 彭宇竹. 肾移植术后一年发生代谢综合征的危险因素分析[J/OL]. 中华移植杂志(电子版), 2024, 18(02): 98-103.
[7] 郭明星, 徐烨, 徐菀佚, 赵莹, 刘冉佳, 潘晨, 崔向丽. 2017—2022年中国105家医院肾移植术后门诊受者免疫抑制剂用药分析[J/OL]. 中华移植杂志(电子版), 2024, 18(02): 104-109.
[8] 张心怡, 吕军好, 陈大进. 2023年肾移植领域研究进展[J/OL]. 中华移植杂志(电子版), 2024, 18(01): 7-11.
[9] 吴小山, 任桂灵, 朱杰东, 史天陆, 马葵芬. 肾移植受者围手术期霉酚酸暴露量及不良反应分析[J/OL]. 中华移植杂志(电子版), 2024, 18(01): 17-21.
[10] 赵丽, 蔡瑞明, 赵纪强, 林民专, 陈志勇, 彭娟. 肾移植术后新发泌尿系统恶性肿瘤二例并文献复习[J/OL]. 中华移植杂志(电子版), 2024, 18(01): 35-39.
[11] 陆婷, 姜巧玲, 孙黎, 王雪静. 加速康复外科在肾移植围手术期应用的研究进展[J/OL]. 中华移植杂志(电子版), 2024, 18(01): 55-59.
[12] 刘路浩, 张鹏, 陈荣鑫, 郭予和, 尹威, 徐璐, 李光辉, 方佳丽, 马俊杰, 陈正. 奈玛特韦/利托那韦治疗肾移植术后重型新型冠状病毒肺炎的临床效果分析[J/OL]. 中华移植杂志(电子版), 2023, 17(06): 349-353.
[13] 李晓宇, 许昕, 谌诚, 张萌, 韩文科, 林健. 肾移植受者新型冠状病毒感染合并肺炎支原体感染临床特点及诊疗分析[J/OL]. 中华移植杂志(电子版), 2023, 17(06): 354-357.
[14] 张怡, 郑少琴, 杨莎. 肺部感染为主要表现艾滋病合并马尔尼菲篮状菌病一例[J/OL]. 中华肺部疾病杂志(电子版), 2023, 16(06): 903-905.
[15] 张秋玥, 程羽, 牛雨田, 唐茂芝, 张克勤, 张懿, 郭亚楠, 涂增. 肾移植与人体微生态的相关性研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(02): 207-213.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?